3,596 research outputs found

    Effective Spoken Language Labeling with Deep Recurrent Neural Networks

    Full text link
    Understanding spoken language is a highly complex problem, which can be decomposed into several simpler tasks. In this paper, we focus on Spoken Language Understanding (SLU), the module of spoken dialog systems responsible for extracting a semantic interpretation from the user utterance. The task is treated as a labeling problem. In the past, SLU has been performed with a wide variety of probabilistic models. The rise of neural networks, in the last couple of years, has opened new interesting research directions in this domain. Recurrent Neural Networks (RNNs) in particular are able not only to represent several pieces of information as embeddings but also, thanks to their recurrent architecture, to encode as embeddings relatively long contexts. Such long contexts are in general out of reach for models previously used for SLU. In this paper we propose novel RNNs architectures for SLU which outperform previous ones. Starting from a published idea as base block, we design new deep RNNs achieving state-of-the-art results on two widely used corpora for SLU: ATIS (Air Traveling Information System), in English, and MEDIA (Hotel information and reservation in France), in French.Comment: 8 pages. Rejected from IJCAI 2017, good remarks overall, but slightly off-topic as from global meta-reviews. Recommendations: 8, 6, 6, 4. arXiv admin note: text overlap with arXiv:1706.0174

    Toward Abstraction from Multi-modal Data: Empirical Studies on Multiple Time-scale Recurrent Models

    Full text link
    The abstraction tasks are challenging for multi- modal sequences as they require a deeper semantic understanding and a novel text generation for the data. Although the recurrent neural networks (RNN) can be used to model the context of the time-sequences, in most cases the long-term dependencies of multi-modal data make the back-propagation through time training of RNN tend to vanish in the time domain. Recently, inspired from Multiple Time-scale Recurrent Neural Network (MTRNN), an extension of Gated Recurrent Unit (GRU), called Multiple Time-scale Gated Recurrent Unit (MTGRU), has been proposed to learn the long-term dependencies in natural language processing. Particularly it is also able to accomplish the abstraction task for paragraphs given that the time constants are well defined. In this paper, we compare the MTRNN and MTGRU in terms of its learning performances as well as their abstraction representation on higher level (with a slower neural activation). This was done by conducting two studies based on a smaller data- set (two-dimension time sequences from non-linear functions) and a relatively large data-set (43-dimension time sequences from iCub manipulation tasks with multi-modal data). We conclude that gated recurrent mechanisms may be necessary for learning long-term dependencies in large dimension multi-modal data-sets (e.g. learning of robot manipulation), even when natural language commands was not involved. But for smaller learning tasks with simple time-sequences, generic version of recurrent models, such as MTRNN, were sufficient to accomplish the abstraction task.Comment: Accepted by IJCNN 201

    Label-Dependencies Aware Recurrent Neural Networks

    Full text link
    In the last few years, Recurrent Neural Networks (RNNs) have proved effective on several NLP tasks. Despite such great success, their ability to model \emph{sequence labeling} is still limited. This lead research toward solutions where RNNs are combined with models which already proved effective in this domain, such as CRFs. In this work we propose a solution far simpler but very effective: an evolution of the simple Jordan RNN, where labels are re-injected as input into the network, and converted into embeddings, in the same way as words. We compare this RNN variant to all the other RNN models, Elman and Jordan RNN, LSTM and GRU, on two well-known tasks of Spoken Language Understanding (SLU). Thanks to label embeddings and their combination at the hidden layer, the proposed variant, which uses more parameters than Elman and Jordan RNNs, but far fewer than LSTM and GRU, is more effective than other RNNs, but also outperforms sophisticated CRF models.Comment: 22 pages, 3 figures. Accepted at CICling 2017 conference. Best Verifiability, Reproducibility, and Working Description awar

    Towards Zero-Shot Frame Semantic Parsing for Domain Scaling

    Full text link
    State-of-the-art slot filling models for goal-oriented human/machine conversational language understanding systems rely on deep learning methods. While multi-task training of such models alleviates the need for large in-domain annotated datasets, bootstrapping a semantic parsing model for a new domain using only the semantic frame, such as the back-end API or knowledge graph schema, is still one of the holy grail tasks of language understanding for dialogue systems. This paper proposes a deep learning based approach that can utilize only the slot description in context without the need for any labeled or unlabeled in-domain examples, to quickly bootstrap a new domain. The main idea of this paper is to leverage the encoding of the slot names and descriptions within a multi-task deep learned slot filling model, to implicitly align slots across domains. The proposed approach is promising for solving the domain scaling problem and eliminating the need for any manually annotated data or explicit schema alignment. Furthermore, our experiments on multiple domains show that this approach results in significantly better slot-filling performance when compared to using only in-domain data, especially in the low data regime.Comment: 4 pages + 1 reference
    corecore