73 research outputs found

    Coexistence of directional and non-directional technologies in 6G wireless dense networks

    Get PDF
    Dense networks are characterized by the prevalence of wireless access points (APs) in close proximity to a population of user devices on a similar scale. By increasing AP density, the aggregate data consumption of a system can be dramatically increased. In this dissertation we consider dense deployment of directional visible light APs. Firstly, we analyze the performance of a visible light communication (VLC) link and propose algorithmic methods as well as novel receiver structures to enhance its quality. Secondly, we study handover algorithms and investigate an AP placement strategy that ties to the system outage probability. Thirdly, we use a geometric model for an indoor space and a reference optical channel model to formulate an optimization problem that proposes a dynamic field of view (FOV) receiver with a goal of optimizing receiver FOV for maximum signal to noise ratio (SNR). From the promising results we get, we then propose the dynamic FOV technique with receiver tracking capability. Its results show an average SNR increase of up to 40% when compared to a fixed FOV receiver. These results motivate the adoption of dynamic pointing and adaptive FOV at the receiver in order to realize improved performance for mobile devices in an optical wireless dense network. This opts us to study interference in VLC systems and how to mitigate it using our proposed receivers. In the context of multi-user networks, we formulate two main novel optimization problems i) a joint optimization of transmit emission pattern and transmit power while satisfying illumination requirements and ii) an optimization to allocate users, balance the network load and optimize device FOV for best performance. We then evaluate the effect of self-blockage as well as random human blockers on our proposed receivers. Finally, we propose to deploy the VLC system in a hybrid setting of other technologies to evaluate the overall system performance for future 6G networks.2022-01-17T00:00:00

    A Heuristic Approach for Optical Transceiver Placement to Optimize SNR and Illuminance Uniformities of an Optical Body Area Network

    Get PDF
    The bi-directional information transfer in optical body area networks (OBANs) is crucial at all the three tiers of communication, i.e., intra-, inter-, and beyond-BAN communication, which correspond to tier-I, tier-II, and tier-III, respectively. However, the provision of uninterrupted uplink (UL) and downlink (DL) connections at tier II (inter-BAN) are extremely critical, since these links serve as a bridge between tier-I (intra-BAN) and tier-III (beyond-BAN) communication. Any negligence at this level could be life-threatening; therefore, enabling quality-of-service (QoS) remains a fundamental design issue at tier-II. Consequently, to provide QoS, a key parameter is to ensure link reliability and communication quality by maintaining a nearly uniform signal-to-noise ratio (SNR) within the coverage area. Several studies have reported the effects of transceiver related parameters on OBAN link performance, nevertheless the implications of changing transmitter locations on the SNR uniformity and communication quality have not been addressed. In this work, we undertake a DL scenario and analyze how the placement of light-emitting diode (LED) lamps can improve the SNR uniformity, regardless of the receiver position. Subsequently, we show that using the principle of reciprocity (POR) and with transmitter-receiver positions switched, the analysis is also applicable to UL, provided that the optical channel remains linear. Moreover, we propose a generalized optimal placement scheme along with a heuristic design formula to achieve uniform SNR and illuminance for DL using a fixed number of transmitters and compare it with an existing technique. The study reveals that the proposed placement technique reduces the fluctuations in SNR by 54% and improves the illuminance uniformity up to 102% as compared to the traditional approach. Finally, we show that, for very low luminous intensity, the SNR values remain sufficient to maintain a minimum bit error rate (BER) of 10−9 with on-off keying non-return-to-zero (OOK-NRZ) modulation format

    Reliable indoor optical wireless communication in the presence of fixed and random blockers

    Get PDF
    The advanced innovation of smartphones has led to the exponential growth of internet users which is expected to reach 71% of the global population by the end of 2027. This in turn has given rise to the demand for wireless data and internet devices that is capable of providing energy-efficient, reliable data transmission and high-speed wireless data services. Light-fidelity (LiFi), known as one of the optical wireless communication (OWC) technology is envisioned as a promising solution to accommodate these demands. However, the indoor LiFi channel is highly environment-dependent which can be influenced by several crucial factors (e.g., presence of people, furniture, random users' device orientation and the limited field of view (FOV) of optical receivers) which may contribute to the blockage of the line-of-sight (LOS) link. In this thesis, it is investigated whether deep learning (DL) techniques can effectively learn the distinct features of the indoor LiFi environment in order to provide superior performance compared to the conventional channel estimation techniques (e.g., minimum mean square error (MMSE) and least squares (LS)). This performance can be seen particularly when access to real-time channel state information (CSI) is restricted and is achieved with the cost of collecting large and meaningful data to train the DL neural networks and the training time which was conducted offline. Two DL-based schemes are designed for signal detection and resource allocation where it is shown that the proposed methods were able to offer close performance to the optimal conventional schemes and demonstrate substantial gain in terms of bit-error ratio (BER) and throughput especially in a more realistic or complex indoor environment. Performance analysis of LiFi networks under the influence of fixed and random blockers is essential and efficient solutions capable of diminishing the blockage effect is required. In this thesis, a CSI acquisition technique for a reconfigurable intelligent surface (RIS)-aided LiFi network is proposed to significantly reduce the dimension of the decision variables required for RIS beamforming. Furthermore, it is shown that several RIS attributes such as shape, size, height and distribution play important roles in increasing the network performance. Finally, the performance analysis for an RIS-aided realistic indoor LiFi network are presented. The proposed RIS configuration shows outstanding performances in reducing the network outage probability under the effect of blockages, random device orientation, limited receiver's FOV, furniture and user behavior. Establishing a LOS link that achieves uninterrupted wireless connectivity in a realistic indoor environment can be challenging. In this thesis, an analysis of link blockage is presented for an indoor LiFi system considering fixed and random blockers. In particular, novel analytical framework of the coverage probability for a single source and multi-source are derived. Using the proposed analytical framework, link blockages of the indoor LiFi network are carefully investigated and it is shown that the incorporation of multiple sources and RIS can significantly reduce the LOS coverage blockage probability in indoor LiFi systems

    Dynamic FOV visible light communications receiver for dense optical networks

    Get PDF
    This study explores how the field-of-view (FOV) of a visible light communications (VLCs) receiver can be manipulated to realise the best signal-to-noise ratio (SNR) while supporting device mobility and optimal access point (AP) selection. The authors propose a dynamic FOV receiver that changes its aperture according to receiver velocity, location, and device orientation. The D-FOV technique is evaluated through modelling, analysis, and experimentation in an indoor environment comprised of 15 VLC APs. The proposed approach is also realised as an algorithm that is studied through analysis and simulation. The results of the study indicate the efficacy of the approach including a 3X increase in predicted SNR over static FOV approaches based on measured received signal strength in the testbed. Additionally, the collected data reveal that D-FOV increases effectiveness in the presence of noise. Finally, the study describes the tradeoffs among the number of VLC sources, FOV, user device velocity, and SNR as a performance metric.Accepted manuscrip

    Interference mitigation through user association and receiver field of view optimization in a multi-user indoor hybrid RF/VLC illuminance-constrained network

    Get PDF
    In this paper we address interference mitigation through user association and receiver field of view (FOV) optimization in a multi-user indoor optical wireless communication (OWC) scenario. We explore several dynamic FOV receiver solutions including steerable (SDFOV) and non-steerable (DFOV) to optimize performance for multiple devices experiencing orientation dynamics. We compare their performance to a baseline fixed FOV receiver (FFOV). Through modeling and simulation we find that SDFOV receivers outperform DFOV by up to 2.6x and FFOV by up to 5.6x in terms of average minimum throughput gain using our test scenario. Similarly, DFOV receivers can achieve up to 2.2x gain over FFOV receivers. For multi-user environments, we compare the performance of coordinated versus distributed system control. Results show that in the worst case, the distributed greedy system performs on average 46%, 16%, and 57% below the coordinated system for SDFOV, DFOV, and FFOV, respectively at a reduced computational complexity compared to the centralized system. We also note that the performance gap in each system diminishes with increasing transmitter Lambertian order. This analysis is done under different room coverage achieved through optimizing the transmitted power to jointly maximize the minimum received power and the standard illuminance range probability at the working plane. Next, we show the impact of self- and random-human blockage at different Lambertian orders on the minimum and average user throughput values. Lastly, we show the gains from employing the hybrid RF/VLC network compared to a VLC-only mode for two different strategies: (1) minimum-throughput-enhancing and (2) sum-throughput-enhancing.https://ieeexplore.ieee.org/abstract/document/9300130Published versio

    Heterogeneous integration of optical wireless communications within next generation networks

    Full text link
    Unprecedented traffic growth is expected in future wireless networks and new technologies will be needed to satisfy demand. Optical wireless (OW) communication offers vast unused spectrum and high area spectral efficiency. In this work, optical cells are envisioned as supplementary access points within heterogeneous RF/OW networks. These networks opportunistically offload traffic to optical cells while utilizing the RF cell for highly mobile devices and devices that lack a reliable OW connection. Visible light communication (VLC) is considered as a potential OW technology due to the increasing adoption of solid state lighting for indoor illumination. Results of this work focus on a full system view of RF/OW HetNets with three primary areas of analysis. First, the need for network densication beyond current RF small cell implementations is evaluated. A media independent model is developed and results are presented that provide motivation for the adoption of hyper dense small cells as complementary components within multi-tier networks. Next, the relationships between RF and OW constraints and link characterization parameters are evaluated in order to define methods for fair comparison when user-centric channel selection criteria are used. RF and OW noise and interference characterization techniques are compared and common OW characterization models are demonstrated to show errors in excess of 100x when dominant interferers are present. Finally, dynamic characteristics of hyper dense OW networks are investigated in order to optimize traffic distribution from a network-centric perspective. A Kalman Filter model is presented to predict device motion for improved channel selection and a novel OW range expansion technique is presented that dynamically alters coverage regions of OW cells by 50%. In addition to analytical results, the dissertation describes two tools that have been created for evaluation of RF/OW HetNets. A communication and lighting simulation toolkit has been developed for modeling and evaluation of environments with VLC-enabled luminaires. The toolkit enhances an iterative site based impulse response simulator model to utilize GPU acceleration and achieves 10x speedup over the previous model. A software defined testbed for OW has also been proposed and applied. The testbed implements a VLC link and a heterogeneous RF/VLC connection that demonstrates the RF/OW HetNet concept as proof of concept
    • …
    corecore