2 research outputs found

    Investigating the Benefits of Exploiting Incremental Learners Under Active Learning Scheme

    No full text
    Part 2: AI Anomaly Detection - Active LearningInternational audienceThis paper examines the efficacy of incrementally updateable learners under the Active Learning concept, a well-known iterative semi-supervised scheme where the initially collected instances, usually a few, are augmented by the combined actions of both the chosen base learner and the human factor. Instead of exploiting conventional batch-mode learners and refining them at the end of each iteration, we introduce the use of incremental ones, so as to apply favorable query strategies and detect the most informative instances before they are provided to the human factor for annotating them. Our assumption about the benefits of this kind of combination into a suitable framework is verified by the achieved classification accuracy against the baseline strategy of Random Sampling and the corresponding learning behavior of the batch-mode approaches over numerous benchmark datasets, under the pool-based scenario. The measured time reveals also a faster response of the proposed framework, since each constructed classification model into the core of Active Learning concept is built partially, updating the existing information without ignoring the already processed data. Finally, all the conducted comparisons are presented along with the appropriate statistical testing processes, so as to verify our claim

    Investigating the Benefits of Exploiting Incremental Learners Under Active Learning Scheme

    No full text
    Part 2: AI Anomaly Detection - Active LearningInternational audienceThis paper examines the efficacy of incrementally updateable learners under the Active Learning concept, a well-known iterative semi-supervised scheme where the initially collected instances, usually a few, are augmented by the combined actions of both the chosen base learner and the human factor. Instead of exploiting conventional batch-mode learners and refining them at the end of each iteration, we introduce the use of incremental ones, so as to apply favorable query strategies and detect the most informative instances before they are provided to the human factor for annotating them. Our assumption about the benefits of this kind of combination into a suitable framework is verified by the achieved classification accuracy against the baseline strategy of Random Sampling and the corresponding learning behavior of the batch-mode approaches over numerous benchmark datasets, under the pool-based scenario. The measured time reveals also a faster response of the proposed framework, since each constructed classification model into the core of Active Learning concept is built partially, updating the existing information without ignoring the already processed data. Finally, all the conducted comparisons are presented along with the appropriate statistical testing processes, so as to verify our claim
    corecore