5 research outputs found

    Investigating Mobile Device Picking-up Motion as a Novel Biometric Modality

    No full text
    Abstract Employing mobile sensor data to recognize user behavioral activities has been well studied in recent years. However, exploitin

    Investigating Mobile Device Picking-up motion as a novel biometric modality

    No full text

    Effective Identity Management on Mobile Devices Using Multi-Sensor Measurements

    Get PDF
    Due to the dramatic increase in popularity of mobile devices in the past decade, sensitive user information is stored and accessed on these devices every day. Securing sensitive data stored and accessed from mobile devices, makes user-identity management a problem of paramount importance. The tension between security and usability renders the task of user-identity verification on mobile devices challenging. Meanwhile, an appropriate identity management approach is missing since most existing technologies for user-identity verification are either one-shot user verification or only work in restricted controlled environments. To solve the aforementioned problems, we investigated and sought approaches from the sensor data generated by human-mobile interactions. The data are collected from the on-board sensors, including voice data from microphone, acceleration data from accelerometer, angular acceleration data from gyroscope, magnetic force data from magnetometer, and multi-touch gesture input data from touchscreen. We studied the feasibility of extracting biometric and behaviour features from the on-board sensor data and how to efficiently employ the features extracted to perform user-identity verification on the smartphone device. Based on the experimental results of the single-sensor modalities, we further investigated how to integrate them with hardware such as fingerprint and Trust Zone to practically fulfill a usable identity management system for both local application and remote services control. User studies and on-device testing sessions were held for privacy and usability evaluation.Computer Science, Department o

    Inferences from Interactions with Smart Devices: Security Leaks and Defenses

    Get PDF
    We unlock our smart devices such as smartphone several times every day using a pin, password, or graphical pattern if the device is secured by one. The scope and usage of smart devices\u27 are expanding day by day in our everyday life and hence the need to make them more secure. In the near future, we may need to authenticate ourselves on emerging smart devices such as electronic doors, exercise equipment, power tools, medical devices, and smart TV remote control. While recent research focuses on developing new behavior-based methods to authenticate these smart devices, pin and password still remain primary methods to authenticate a user on a device. Although the recent research exposes the observation-based vulnerabilities, the popular belief is that the direct observation attacks can be thwarted by simple methods that obscure the attacker\u27s view of the input console (or screen). In this dissertation, we study the users\u27 hand movement pattern while they type on their smart devices. The study concentrates on the following two factors; (1) finding security leaks from the observed hand movement patterns (we showcase that the user\u27s hand movement on its own reveals the user\u27s sensitive information) and (2) developing methods to build lightweight, easy to use, and more secure authentication system. The users\u27 hand movement patterns were captured through video camcorder and inbuilt motion sensors such as gyroscope and accelerometer in the user\u27s device
    corecore