15,136 research outputs found

    Investigating Facebook groups through a random graph model

    Full text link
    Facebook disseminates messages for billions of users everyday. Though there are log files stored on central servers, law enforcement agencies outside of the U.S. cannot easily acquire server log files from Facebook. This work models Facebook user groups by using a random graph model. Our aim is to facilitate detectives quickly estimating the size of a Facebook group with which a suspect is involved. We estimate this group size according to the number of immediate friends and the number of extended friends which are usually accessible by the public. We plot and examine UML diagrams to describe Facebook functions. Our experimental results show that asymmetric Facebook friendship fulfills the assumption of applying random graph models

    On Facebook, most ties are weak

    Full text link
    Pervasive socio-technical networks bring new conceptual and technological challenges to developers and users alike. A central research theme is evaluation of the intensity of relations linking users and how they facilitate communication and the spread of information. These aspects of human relationships have been studied extensively in the social sciences under the framework of the "strength of weak ties" theory proposed by Mark Granovetter.13 Some research has considered whether that theory can be extended to online social networks like Facebook, suggesting interaction data can be used to predict the strength of ties. The approaches being used require handling user-generated data that is often not publicly available due to privacy concerns. Here, we propose an alternative definition of weak and strong ties that requires knowledge of only the topology of the social network (such as who is a friend of whom on Facebook), relying on the fact that online social networks, or OSNs, tend to fragment into communities. We thus suggest classifying as weak ties those edges linking individuals belonging to different communities and strong ties as those connecting users in the same community. We tested this definition on a large network representing part of the Facebook social graph and studied how weak and strong ties affect the information-diffusion process. Our findings suggest individuals in OSNs self-organize to create well-connected communities, while weak ties yield cohesion and optimize the coverage of information spread.Comment: Accepted version of the manuscript before ACM editorial work. Check http://cacm.acm.org/magazines/2014/11/179820-on-facebook-most-ties-are-weak/ for the final versio

    Comparing Community Structure to Characteristics in Online Collegiate Social Networks

    Get PDF
    We study the structure of social networks of students by examining the graphs of Facebook "friendships" at five American universities at a single point in time. We investigate each single-institution network's community structure and employ graphical and quantitative tools, including standardized pair-counting methods, to measure the correlations between the network communities and a set of self-identified user characteristics (residence, class year, major, and high school). We review the basic properties and statistics of the pair-counting indices employed and recall, in simplified notation, a useful analytical formula for the z-score of the Rand coefficient. Our study illustrates how to examine different instances of social networks constructed in similar environments, emphasizes the array of social forces that combine to form "communities," and leads to comparative observations about online social lives that can be used to infer comparisons about offline social structures. In our illustration of this methodology, we calculate the relative contributions of different characteristics to the community structure of individual universities and subsequently compare these relative contributions at different universities, measuring for example the importance of common high school affiliation to large state universities and the varying degrees of influence common major can have on the social structure at different universities. The heterogeneity of communities that we observe indicates that these networks typically have multiple organizing factors rather than a single dominant one.Comment: Version 3 (17 pages, 5 multi-part figures), accepted in SIAM Revie

    Extraction and Analysis of Facebook Friendship Relations

    Get PDF
    Online Social Networks (OSNs) are a unique Web and social phenomenon, affecting tastes and behaviors of their users and helping them to maintain/create friendships. It is interesting to analyze the growth and evolution of Online Social Networks both from the point of view of marketing and other of new services and from a scientific viewpoint, since their structure and evolution may share similarities with real-life social networks. In social sciences, several techniques for analyzing (online) social networks have been developed, to evaluate quantitative properties (e.g., defining metrics and measures of structural characteristics of the networks) or qualitative aspects (e.g., studying the attachment model for the network evolution, the binary trust relationships, and the link prediction problem).\ud However, OSN analysis poses novel challenges both to Computer and Social scientists. We present our long-term research effort in analyzing Facebook, the largest and arguably most successful OSN today: it gathers more than 500 million users. Access to data about Facebook users and their friendship relations, is restricted; thus, we acquired the necessary information directly from the front-end of the Web site, in order to reconstruct a sub-graph representing anonymous interconnections among a significant subset of users. We describe our ad-hoc, privacy-compliant crawler for Facebook data extraction. To minimize bias, we adopt two different graph mining techniques: breadth-first search (BFS) and rejection sampling. To analyze the structural properties of samples consisting of millions of nodes, we developed a specific tool for analyzing quantitative and qualitative properties of social networks, adopting and improving existing Social Network Analysis (SNA) techniques and algorithms

    Hip to be square: designing serious apps for coolness

    Get PDF
    This paper discusses previous work in developing intervention apps for sustainability that are designed to be cool and improve user engagement. While much work has been carried out by the HCI community in sustainability, particularly energy consumption; little has been done to improve interaction with this relatively mundane but serious topic to engender a compelling and cooler experience. Using the theme of ‘it’s cool to be uncool’ for sustainability, we discuss the design of an eco-feedback Facebook application for deployment in a trial study. The Power Ballads Facebook app mashed mainstream ‘pop’ chart music with domestic energy data using aversive stimuli. Presented here are the pilot findings that suggest participants found the app cool

    Uncovering nodes that spread information between communities in social networks

    Get PDF
    From many datasets gathered in online social networks, well defined community structures have been observed. A large number of users participate in these networks and the size of the resulting graphs poses computational challenges. There is a particular demand in identifying the nodes responsible for information flow between communities; for example, in temporal Twitter networks edges between communities play a key role in propagating spikes of activity when the connectivity between communities is sparse and few edges exist between different clusters of nodes. The new algorithm proposed here is aimed at revealing these key connections by measuring a node's vicinity to nodes of another community. We look at the nodes which have edges in more than one community and the locality of nodes around them which influence the information received and broadcasted to them. The method relies on independent random walks of a chosen fixed number of steps, originating from nodes with edges in more than one community. For the large networks that we have in mind, existing measures such as betweenness centrality are difficult to compute, even with recent methods that approximate the large number of operations required. We therefore design an algorithm that scales up to the demand of current big data requirements and has the ability to harness parallel processing capabilities. The new algorithm is illustrated on synthetic data, where results can be judged carefully, and also on a real, large scale Twitter activity data, where new insights can be gained
    • …
    corecore