1,072,610 research outputs found
Poisson inverse problems
In this paper we focus on nonparametric estimators in inverse problems for
Poisson processes involving the use of wavelet decompositions. Adopting an
adaptive wavelet Galerkin discretization, we find that our method combines the
well-known theoretical advantages of wavelet--vaguelette decompositions for
inverse problems in terms of optimally adapting to the unknown smoothness of
the solution, together with the remarkably simple closed-form expressions of
Galerkin inversion methods. Adapting the results of Barron and Sheu [Ann.
Statist. 19 (1991) 1347--1369] to the context of log-intensity functions
approximated by wavelet series with the use of the Kullback--Leibler distance
between two point processes, we also present an asymptotic analysis of
convergence rates that justifies our approach. In order to shed some light on
the theoretical results obtained and to examine the accuracy of our estimates
in finite samples, we illustrate our method by the analysis of some simulated
examples.Comment: Published at http://dx.doi.org/10.1214/009053606000000687 in the
Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Invisibility and Inverse Problems
This survey of recent developments in cloaking and transformation optics is
an expanded version of the lecture by Gunther Uhlmann at the 2008 Annual
Meeting of the American Mathematical Society.Comment: 68 pages, 12 figures. To appear in the Bulletin of the AM
Inverse problems in diffraction
A two-dimensional problem of diffraction of a plane electromagnetic wave on a smooth 2 pi-periodic surface is considered. A numerical algorithm solving this problem is developed. An inverse problem of determination of the shape of 2 pi-periodic surface using the performance data of reverse scattering is considered. The inverse problem was solved by means of minimization of the residual functional with the help of the gradient descent method. The initial data were calculated with the help of the numerical method. On each step of the iterative method of minimization, the residual functional was calculated approximately with the help of the small slope method. The examples of the shape determination are considered
Bayesian inference for inverse problems
Traditionally, the MaxEnt workshops start by a tutorial day. This paper
summarizes my talk during 2001'th workshop at John Hopkins University. The main
idea in this talk is to show how the Bayesian inference can naturally give us
all the necessary tools we need to solve real inverse problems: starting by
simple inversion where we assume to know exactly the forward model and all the
input model parameters up to more realistic advanced problems of myopic or
blind inversion where we may be uncertain about the forward model and we may
have noisy data. Starting by an introduction to inverse problems through a few
examples and explaining their ill posedness nature, I briefly presented the
main classical deterministic methods such as data matching and classical
regularization methods to show their limitations. I then presented the main
classical probabilistic methods based on likelihood, information theory and
maximum entropy and the Bayesian inference framework for such problems. I show
that the Bayesian framework, not only generalizes all these methods, but also
gives us natural tools, for example, for inferring the uncertainty of the
computed solutions, for the estimation of the hyperparameters or for handling
myopic or blind inversion problems. Finally, through a deconvolution problem
example, I presented a few state of the art methods based on Bayesian inference
particularly designed for some of the mass spectrometry data processing
problems.Comment: Presented at MaxEnt01. To appear in Bayesian Inference and Maximum
Entropy Methods, B. Fry (Ed.), AIP Proceedings. 20pages, 13 Postscript
figure
- …
