1,025,985 research outputs found

    Finite-size scaling of out-of-time-ordered correlators at late times

    Get PDF
    Chaotic dynamics in quantum many-body systems scrambles local information so that at late times it can no longer be accessed locally. This is reflected quantitatively in the out-of-time-ordered correlator of local operators, which is expected to decay to zero with time. However, for systems of finite size, out-of-time-ordered correlators do not decay exactly to zero and in this paper we show that the residual value can provide useful insights into the chaotic dynamics. When energy is conserved, the late-time saturation value of the out-of-time-ordered correlator of generic traceless local operators scales as an inverse polynomial in the system size. This is in contrast to the inverse exponential scaling expected for chaotic dynamics without energy conservation. We provide both analytical arguments and numerical simulations to support this conclusion.Comment: improved presentatio

    Statistical Properties of Functionals of the Paths of a Particle Diffusing in a One-Dimensional Random Potential

    Full text link
    We present a formalism for obtaining the statistical properties of functionals and inverse functionals of the paths of a particle diffusing in a one-dimensional quenched random potential. We demonstrate the implementation of the formalism in two specific examples: (1) where the functional corresponds to the local time spent by the particle around the origin and (2) where the functional corresponds to the occupation time spent by the particle on the positive side of the origin, within an observation time window of size tt. We compute the disorder average distributions of the local time, the inverse local time, the occupation time and the inverse occupation time, and show that in many cases disorder modifies the behavior drastically.Comment: Revtex two column 27 pages, 10 figures, 3 table

    Non-markovian mesoscopic dissipative dynamics of open quantum spin chains

    Full text link
    We study the dissipative dynamics of NN quantum spins with Lindblad generator consisting of operators scaling as fluctuations, namely with the inverse square-root of NN. In the large NN limit, the microscopic dissipative time-evolution converges to a non-Markovian unitary dynamics on strictly local operators, while at the mesoscopic level of fluctuations it gives rise to a dissipative non-Markovian dynamics. The mesoscopic time-evolution is Gaussian and exhibits either a stable or an unstable asymptotic character; furthermore, the mesoscopic dynamics builds correlations among fluctuations that survive in time even when the original microscopic dynamics is unable to correlate local observables.Comment: 18 page

    Analysis of a space--time hybridizable discontinuous Galerkin method for the advection--diffusion problem on time-dependent domains

    Full text link
    This paper presents the first analysis of a space--time hybridizable discontinuous Galerkin method for the advection--diffusion problem on time-dependent domains. The analysis is based on non-standard local trace and inverse inequalities that are anisotropic in the spatial and time steps. We prove well-posedness of the discrete problem and provide a priori error estimates in a mesh-dependent norm. Convergence theory is validated by a numerical example solving the advection--diffusion problem on a time-dependent domain for approximations of various polynomial degree
    corecore