11 research outputs found

    Deep convolutional inverse graphics network

    Get PDF
    This paper presents the Deep Convolution Inverse Graphics Network (DC-IGN), a model that aims to learn an interpretable representation of images, disentangled with respect to three-dimensional scene structure and viewing transformations such as depth rotations and lighting variations. The DC-IGN model is composed of multiple layers of convolution and de-convolution operators and is trained using the Stochastic Gradient Variational Bayes (SGVB) algorithm [10]. We propose a training procedure to encourage neurons in the graphics code layer to represent a specific transformation (e.g. pose or light). Given a single input image, our model can generate new images of the same object with variations in pose and lighting. We present qualitative and quantitative tests of the model's efficacy at learning a 3D rendering engine for varied object classes including faces and chairs

    Inner Space Preserving Generative Pose Machine

    Full text link
    Image-based generative methods, such as generative adversarial networks (GANs) have already been able to generate realistic images with much context control, specially when they are conditioned. However, most successful frameworks share a common procedure which performs an image-to-image translation with pose of figures in the image untouched. When the objective is reposing a figure in an image while preserving the rest of the image, the state-of-the-art mainly assumes a single rigid body with simple background and limited pose shift, which can hardly be extended to the images under normal settings. In this paper, we introduce an image "inner space" preserving model that assigns an interpretable low-dimensional pose descriptor (LDPD) to an articulated figure in the image. Figure reposing is then generated by passing the LDPD and the original image through multi-stage augmented hourglass networks in a conditional GAN structure, called inner space preserving generative pose machine (ISP-GPM). We evaluated ISP-GPM on reposing human figures, which are highly articulated with versatile variations. Test of a state-of-the-art pose estimator on our reposed dataset gave an accuracy over 80% on PCK0.5 metric. The results also elucidated that our ISP-GPM is able to preserve the background with high accuracy while reasonably recovering the area blocked by the figure to be reposed.Comment: http://www.northeastern.edu/ostadabbas/2018/07/23/inner-space-preserving-generative-pose-machine

    A Compositional Object-Based Approach to Learning Physical Dynamics

    Get PDF
    We present the Neural Physics Engine (NPE), an object-based neural network architecture for learning predictive models of intuitive physics. We propose a factorization of a physical scene into composable object-based representations and also the NPE architecture whose compositional structure factorizes object dynamics into pairwise interactions. Our approach draws on the strengths of both symbolic and neural approaches: like a symbolic physics engine, the NPE is endowed with generic notions of objects and their interactions, but as a neural network it can also be trained via stochastic gradient descent to adapt to specific object properties and dynamics of different worlds. We evaluate the efficacy of our approach on simple rigid body dynamics in two-dimensional worlds. By comparing to less structured architectures, we show that our model's compositional representation of the structure in physical interactions improves its ability to predict movement, generalize to different numbers of objects, and infer latent properties of objects such as mass.National Science Foundation (U.S.) (Award CCF-1231216)United States. Office of Naval Research (Grant N00014-16-1-2007

    Towards Robust, Interpretable and Scalable Visual Representations

    Get PDF
    Visual representation is one of the central problems in computer vision. The essential problem is to develop a unified representation that effectively encodes both visual appearance and spatial information so that it can be easily applied to various vision applications such as face recognition, image matching, and multimodal image retrieval. Along with the history of computer vision research, there are four major levels of visual representations, i.e., geometric, low-level, mid-level and high-level. The dissertation comprises four works studying effective visual representations in the four different levels. Multiple approaches are proposed with the aim of improving the robustness, interpretability, and scalability of visual representations. Geometric features are effective in matching images under spatial transformations however their performance is sensitive to the noises. In the first part, we propose to model the uncertainty of geometric representation based on line segments and propose to equip these features with uncertainty modeling so that they could be robustly applied in the image-based geolocation application. We study in the second part the robustness of feature encoding to noisy keypoints. We show that traditional feature encoding is sensitive to background or noisy features. We propose the Selective Encoding framework which learns the relevance distribution of each codeword and incorporate such information with the original codebook model. Our approach is more robust to the localization errors or uncertainty in the active face authentication application. The mission of visual understanding is to express and describe the image content which is essentially relating images to human language. That typically involves finding a common representation inferable from both domains of data. In the third part, we propose a framework to extract a mid-level spatial representation directly from language descriptions and match such spatial layouts to the detected object bounding boxes for retrieving indoor scene images from user text queries. Modern high-level visual features are typically learned from supervised datasets, whose scalability is largely limited by the requirement of dedicated human annotation. In the last part, we propose to learn visual representations from large-scale weakly supervised data for a large number of natural language-based concepts, i.e., n-gram phrases. We propose the differentiable Jelinek-Mercer smoothing loss and train a deep convolutional neural network from images with associated user comments. We show that the learned model can predict a large number of phrase-based concepts from images, can be effectively applied to image-caption applications and transfers well to other visual recognition datasets
    corecore