10,565 research outputs found

    Inverse Classification for Comparison-based Interpretability in Machine Learning

    Full text link
    In the context of post-hoc interpretability, this paper addresses the task of explaining the prediction of a classifier, considering the case where no information is available, neither on the classifier itself, nor on the processed data (neither the training nor the test data). It proposes an instance-based approach whose principle consists in determining the minimal changes needed to alter a prediction: given a data point whose classification must be explained, the proposed method consists in identifying a close neighbour classified differently, where the closeness definition integrates a sparsity constraint. This principle is implemented using observation generation in the Growing Spheres algorithm. Experimental results on two datasets illustrate the relevance of the proposed approach that can be used to gain knowledge about the classifier.Comment: preprin

    Extractive Adversarial Networks: High-Recall Explanations for Identifying Personal Attacks in Social Media Posts

    Full text link
    We introduce an adversarial method for producing high-recall explanations of neural text classifier decisions. Building on an existing architecture for extractive explanations via hard attention, we add an adversarial layer which scans the residual of the attention for remaining predictive signal. Motivated by the important domain of detecting personal attacks in social media comments, we additionally demonstrate the importance of manually setting a semantically appropriate `default' behavior for the model by explicitly manipulating its bias term. We develop a validation set of human-annotated personal attacks to evaluate the impact of these changes.Comment: Accepted to EMNLP 2018 Code and data available at https://github.com/shcarton/rcn

    Deep Learning versus Classical Regression for Brain Tumor Patient Survival Prediction

    Full text link
    Deep learning for regression tasks on medical imaging data has shown promising results. However, compared to other approaches, their power is strongly linked to the dataset size. In this study, we evaluate 3D-convolutional neural networks (CNNs) and classical regression methods with hand-crafted features for survival time regression of patients with high grade brain tumors. The tested CNNs for regression showed promising but unstable results. The best performing deep learning approach reached an accuracy of 51.5% on held-out samples of the training set. All tested deep learning experiments were outperformed by a Support Vector Classifier (SVC) using 30 radiomic features. The investigated features included intensity, shape, location and deep features. The submitted method to the BraTS 2018 survival prediction challenge is an ensemble of SVCs, which reached a cross-validated accuracy of 72.2% on the BraTS 2018 training set, 57.1% on the validation set, and 42.9% on the testing set. The results suggest that more training data is necessary for a stable performance of a CNN model for direct regression from magnetic resonance images, and that non-imaging clinical patient information is crucial along with imaging information.Comment: Contribution to The International Multimodal Brain Tumor Segmentation (BraTS) Challenge 2018, survival prediction tas
    corecore