15,632 research outputs found

    Inverse Temperature 4-vector in Special Relativity

    Full text link
    There exist several prescriptions for identifying the notion of temperature in special relativity. We argue that the inverse temperature 4-vector β\bf \beta is the only viable option from the laws of thermodynamics, and β\bf \beta is a future-directed timelike 4-vector. Using a superfluidity thought experiment, one can show that β\bf \beta is not necessarily along the time direction of the comoving frame of the system, as is usually thought. It is conjectured that, for an isolated system, the 4-vector is determined from the entropy-maximum principle.Comment: 11 pages, revised versio

    Covariant statistical mechanics and the stress-energy tensor

    Full text link
    After recapitulating the covariant formalism of equilibrium statistical mechanics in special relativity and extending it to the case of a non-vanishing spin tensor, we show that the relativistic stress-energy tensor at thermodynamical equilibrium can be obtained from a functional derivative of the partition function with respect to the inverse temperature four-vector \beta. For usual thermodynamical equilibrium, the stress-energy tensor turns out to be the derivative of the relativistic thermodynamic potential current with respect to the four-vector \beta, i.e. T^{\mu \nu} = - \partial \Phi^\mu/\partial \beta_\nu. This formula establishes a relation between stress-energy tensor and entropy current at equilibrium possibly extendable to non-equilibrium hydrodynamics.Comment: 4 pages. Final version accepted for publication in Phys. Rev. Let

    Thermodynamics of Extended Bodies in Special Relativity

    Full text link
    Relativistic thermodynamics is generalized to accommodate four dimensional rotation in a flat spacetime. An extended body can be in equilibrium when its each element moves along a Killing flow. There are three types of basic Killing flows in a flat spacetime, each of which corresponds to translational motion, spatial rotation, and constant linear acceleration; spatial rotation and constant linear acceleration are regarded as four dimensional rotation. Translational motion has been mainly investigated in the past literature of relativistic thermodynamics. Thermodynamics of the other two is derived in the present paper.Comment: 8 pages, no figur

    Snyder's Model -- de Sitter Special Relativity Duality and de Sitter Gravity

    Get PDF
    Between Snyder's quantized space-time model in de Sitter space of momenta and the \dS special relativity on \dS-spacetime of radius RR with Beltrami coordinates, there is a one-to-one dual correspondence supported by a minimum uncertainty-like argument. Together with Planck length P\ell_P, R(3/Λ)1/2R\simeq (3/\Lambda)^{1/2} should be a fundamental constant. They lead to a dimensionless constant gPR1=(Gc3Λ/3)1/21061g{\sim\ell_PR^{-1}}=(G\hbar c^{-3}\Lambda/3)^{1/2}\sim 10^{-61}. These indicate that physics at these two scales should be dual to each other and there is in-between gravity of local \dS-invariance characterized by gg. A simple model of \dS-gravity with a gauge-like action on umbilical manifolds may show these characters. It can pass the observation tests and support the duality.Comment: 32 page

    Nonlocal observables and lightcone-averaging in relativistic thermodynamics

    Full text link
    The unification of relativity and thermodynamics has been a subject of considerable debate over the last 100 years. The reasons for this are twofold: (i) Thermodynamic variables are nonlocal quantities and, thus, single out a preferred class of hyperplanes in spacetime. (ii) There exist different, seemingly equally plausible ways of defining heat and work in relativistic systems. These ambiguities led, for example, to various proposals for the Lorentz transformation law of temperature. Traditional 'isochronous' formulations of relativistic thermodynamics are neither theoretically satisfactory nor experimentally feasible. Here, we demonstrate how these deficiencies can be resolved by defining thermodynamic quantities with respect to the backward-lightcone of an observation event. This approach yields novel, testable predictions and allows for a straightforward-extension of thermodynamics to General Relativity. Our theoretical considerations are illustrated through three-dimensional relativistic many-body simulations.Comment: typos in Eqs. (12) and (14) corrected, minor additions in the tex

    On the interaction between two Kerr black holes

    Full text link
    The double-Kerr solution is generated using both a Backlund transformation and the Belinskii-Zakharov inverse-scattering technique. We build a dictionary between the parametrisations naturally obtained in the two methods and show their equivalence. We then focus on the asymptotically flat double-Kerr system obeying the axis condition which is Z_2^\phi invariant; for this system there is an exact formula for the force between the two black holes, in terms of their physical quantities and the coordinate distance. We then show that 1) the angular velocity of the two black holes decreases from the usual Kerr value at infinite distance to zero in the touching limit; 2) the extremal limit of the two black holes is given by |J|=cM^2, where c depends on the distance and varies from one to infinity as the distance decreases; 3) for sufficiently large angular momentum the temperature of the black holes attains a maximum at a certain finite coordinate distance. All of these results are interpreted in terms of the dragging effects of the system.Comment: 19 pages, 4 figures. v2: changed statement about thermodynamical equilibrium in section 3; minor changes; added references. v3: added references to previous relevant work; removed one equation (see note added); other minor corrections; final version to be published in JHE

    Statistical mechanics in the context of special relativity II

    Get PDF
    The special relativity laws emerge as one-parameter (light speed) generalizations of the corresponding laws of classical physics. These generalizations, imposed by the Lorentz transformations, affect both the definition of the various physical observables (e.g. momentum, energy, etc), as well as the mathematical apparatus of the theory. Here, following the general lines of [Phys. Rev. E {\bf 66}, 056125 (2002)], we show that the Lorentz transformations impose also a proper one-parameter generalization of the classical Boltzmann-Gibbs-Shannon entropy. The obtained relativistic entropy permits to construct a coherent and selfconsistent relativistic statistical theory, preserving the main features of the ordinary statistical theory, which recovers in the classical limit. The predicted distribution function is a one-parameter continuous deformation of the classical Maxwell-Boltzmann distribution and has a simple analytic form, showing power law tails in accordance with the experimental evidence. Furthermore the new statistical mechanics can be obtained as stationary case of a generalized kinetic theory governed by an evolution equation obeying the H-theorem and reproducing the Boltzmann equation of the ordinary kinetics in the classical limit.Comment: 14 pages, no figures, proof correction
    corecore