830,694 research outputs found
The Blackbody Radiation Spectrum Follows from Zero-Point Radiation and the Structure of Relativistic Spacetime in Classical Physics
The analysis of this article is entirely within classical physics. Any
attempt to describe nature within classical physics requires the presence of
Lorentz-invariant classical electromagnetic zero-point radiation so as to
account for the Casimir forces between parallel conducting plates at low
temperatures. Furthermore, conformal symmetry carries solutions of Maxwell's
equations into solutions. In an inertial frame, conformal symmetry leaves
zero-point radiation invariant and does not connect it to non-zero-temperature;
time-dilating conformal transformations carry the Lorentz-invariant zero-point
radiation spectrum into zero-point radiation and carry the thermal radiation
spectrum at non-zero temperature into thermal radiation at a different
non-zero-temperature. However, in a non-inertial frame, a time-dilating
conformal transformation carries classical zero-point radiation into thermal
radiation at a finite non-zero-temperature. By taking the no-acceleration
limit, one can obtain the Planck radiation spectrum for blackbody radiation in
an inertial frame from the thermal radiation spectrum in an accelerating frame.
Here this connection between zero-point radiation and thermal radiation is
illustrated for a scalar radiation field in a Rindler frame undergoing
relativistic uniform proper acceleration through flat spacetime in two
spacetime dimensions. The analysis indicates that the Planck radiation spectrum
for thermal radiation follows from zero-point radiation and the structure of
relativistic spacetime in classical physics.Comment: 21 page
The gauge invariant effective potential: equilibrium and non-equilibrium aspects
We propose a gauge invariant formulation of the effective potential in terms
of a gauge invariant order parameter, for the Abelian Higgs model. The one-loop
contribution at zero and finite temperature is computed explicitly, and the
leading terms in the high temperature expansion are obtained. The result is
contrasted to the effective potential obtained in several covariant
gauge-fixing schemes, and the gauge invariant quantities that can be reliably
extracted from these are identified. It is pointed out that the gauge invariant
effective potential in the one-loop approximation is complex for {\em all
values} of the order parameter between the maximum and the minimum of the tree
level potential, both at zero and non-zero temperature. The imaginary part is
related to long-wavelength instabilities towards phase separation. We study the
real-time dynamics of initial states in the spinodal region, and relate the
imaginary part of the effective potential to the growth rate of equal-time
gauge invariant correlation functions in these states. We conjecture that the
spinodal instabilities may play a role in non-equilibrium processes {\em
inside} the nucleating bubbles if the transition is first order.Comment: 27 pages revtex 3.0, no figures; one reference adde
- …
