52,044 research outputs found

    Learning Binary and Sparse Permutation-Invariant Representations for Fast and Memory Efficient Whole Slide Image Search

    Full text link
    Learning suitable Whole slide images (WSIs) representations for efficient retrieval systems is a non-trivial task. The WSI embeddings obtained from current methods are in Euclidean space not ideal for efficient WSI retrieval. Furthermore, most of the current methods require high GPU memory due to the simultaneous processing of multiple sets of patches. To address these challenges, we propose a novel framework for learning binary and sparse WSI representations utilizing a deep generative modelling and the Fisher Vector. We introduce new loss functions for learning sparse and binary permutation-invariant WSI representations that employ instance-based training achieving better memory efficiency. The learned WSI representations are validated on The Cancer Genomic Atlas (TCGA) and Liver-Kidney-Stomach (LKS) datasets. The proposed method outperforms Yottixel (a recent search engine for histopathology images) both in terms of retrieval accuracy and speed. Further, we achieve competitive performance against SOTA on the public benchmark LKS dataset for WSI classification

    MULTI-MODAL SELF-SUPERVISED REPRESENTATION LEARNING FOR EARTH OBSERVATION

    Get PDF
    Self-Supervised learning (SSL) has reduced the performance gap between supervised and unsupervised learning, due to its ability to learn invariant representations. This is a boon to the domains like Earth Observation (EO), where labelled data availability is scarce but unlabelled data is freely available. While Transfer Learning from generic RGB pre-trained models is still common-place in EO, we argue that, it is essential to have good EO domain specific pre-trained model in order to use with downstream tasks with limited labelled data. Hence, we explored the applicability of SSL with multi-modal satellite imagery for downstream tasks. For this we utilised the state-of-art SSL architectures i.e. BYOL and SimSiam to train on EO data. Also to obtain better invariant representations, we considered multi-spectral (MS) images and synthetic aperture radar (SAR) images as separate augmented views of an image to maximise their similarity. Our work shows that by learning single channel representations through non-contrastive learning, our approach can outperform ImageNet pre-trained models significantly on a scene classification task. We further explored the usefulness of a momentum encoder by comparing the two architectures i.e. BYOL and SimSiam but did not identify a significant improvement in performance between the models

    Is Robustness To Transformations Driven by Invariant Neural Representations?

    Full text link
    Deep Convolutional Neural Networks (DCNNs) have demonstrated impressive robustness to recognize objects under transformations (e.g. blur or noise) when these transformations are included in the training set. A hypothesis to explain such robustness is that DCNNs develop invariant neural representations that remain unaltered when the image is transformed. Yet, to what extent this hypothesis holds true is an outstanding question, as including transformations in the training set could lead to properties different from invariance, e.g. parts of the network could be specialized to recognize either transformed or non-transformed images. In this paper, we analyze the conditions under which invariance emerges. To do so, we leverage that invariant representations facilitate robustness to transformations for object categories that are not seen transformed during training. Our results with state-of-the-art DCNNs indicate that invariant representations strengthen as the number of transformed categories in the training set is increased. This is much more prominent with local transformations such as blurring and high-pass filtering, compared to geometric transformations such as rotation and thinning, that entail changes in the spatial arrangement of the object. Our results contribute to a better understanding of invariant representations in deep learning, and the conditions under which invariance spontaneously emerges
    • …
    corecore