182,854 research outputs found

    DOMINO: Domain-invariant Hyperdimensional Classification for Multi-Sensor Time Series Data

    Full text link
    With the rapid evolution of the Internet of Things, many real-world applications utilize heterogeneously connected sensors to capture time-series information. Edge-based machine learning (ML) methodologies are often employed to analyze locally collected data. However, a fundamental issue across data-driven ML approaches is distribution shift. It occurs when a model is deployed on a data distribution different from what it was trained on, and can substantially degrade model performance. Additionally, increasingly sophisticated deep neural networks (DNNs) have been proposed to capture spatial and temporal dependencies in multi-sensor time series data, requiring intensive computational resources beyond the capacity of today's edge devices. While brain-inspired hyperdimensional computing (HDC) has been introduced as a lightweight solution for edge-based learning, existing HDCs are also vulnerable to the distribution shift challenge. In this paper, we propose DOMINO, a novel HDC learning framework addressing the distribution shift problem in noisy multi-sensor time-series data. DOMINO leverages efficient and parallel matrix operations on high-dimensional space to dynamically identify and filter out domain-variant dimensions. Our evaluation on a wide range of multi-sensor time series classification tasks shows that DOMINO achieves on average 2.04% higher accuracy than state-of-the-art (SOTA) DNN-based domain generalization techniques, and delivers 16.34x faster training and 2.89x faster inference. More importantly, DOMINO performs notably better when learning from partially labeled and highly imbalanced data, providing 10.93x higher robustness against hardware noises than SOTA DNNs

    Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks

    Full text link
    One of the challenges in modeling cognitive events from electroencephalogram (EEG) data is finding representations that are invariant to inter- and intra-subject differences, as well as to inherent noise associated with such data. Herein, we propose a novel approach for learning such representations from multi-channel EEG time-series, and demonstrate its advantages in the context of mental load classification task. First, we transform EEG activities into a sequence of topology-preserving multi-spectral images, as opposed to standard EEG analysis techniques that ignore such spatial information. Next, we train a deep recurrent-convolutional network inspired by state-of-the-art video classification to learn robust representations from the sequence of images. The proposed approach is designed to preserve the spatial, spectral, and temporal structure of EEG which leads to finding features that are less sensitive to variations and distortions within each dimension. Empirical evaluation on the cognitive load classification task demonstrated significant improvements in classification accuracy over current state-of-the-art approaches in this field.Comment: To be published as a conference paper at ICLR 201

    Making the Dynamic Time Warping Distance Warping-Invariant

    Get PDF
    The literature postulates that the dynamic time warping (dtw) distance can cope with temporal variations but stores and processes time series in a form as if the dtw-distance cannot cope with such variations. To address this inconsistency, we first show that the dtw-distance is not warping-invariant. The lack of warping-invariance contributes to the inconsistency mentioned above and to a strange behavior. To eliminate these peculiarities, we convert the dtw-distance to a warping-invariant semi-metric, called time-warp-invariant (twi) distance. Empirical results suggest that the error rates of the twi and dtw nearest-neighbor classifier are practically equivalent in a Bayesian sense. However, the twi-distance requires less storage and computation time than the dtw-distance for a broad range of problems. These results challenge the current practice of applying the dtw-distance in nearest-neighbor classification and suggest the proposed twi-distance as a more efficient and consistent option.Comment: arXiv admin note: substantial text overlap with arXiv:1808.0996
    • …
    corecore