4,497 research outputs found

    Vertex Algebras and Mirror Symmetry

    Full text link
    Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish the relation between these vertex algebras for mirror Calabi-Yau manifolds. This should eventually allow us to rewrite the whole story of toric Mirror Symmetry in the language of sheaves of vertex algebras. Our approach is purely algebraic and involves simple techniques from toric geometry and homological algebra, as well as some basic results of the theory of vertex algebras. Ideas of this paper may also be useful in other problems related to maps from curves to algebraic varieties. This paper could also be of interest to physicists, because it contains explicit descriptions of A and B models of Calabi-Yau hypersurfaces and complete intersection in terms of free bosons and fermions.Comment: 45 pages, Late

    Learning Discriminative Features with Class Encoder

    Full text link
    Deep neural networks usually benefit from unsupervised pre-training, e.g. auto-encoders. However, the classifier further needs supervised fine-tuning methods for good discrimination. Besides, due to the limits of full-connection, the application of auto-encoders is usually limited to small, well aligned images. In this paper, we incorporate the supervised information to propose a novel formulation, namely class-encoder, whose training objective is to reconstruct a sample from another one of which the labels are identical. Class-encoder aims to minimize the intra-class variations in the feature space, and to learn a good discriminative manifolds on a class scale. We impose the class-encoder as a constraint into the softmax for better supervised training, and extend the reconstruction on feature-level to tackle the parameter size issue and translation issue. The experiments show that the class-encoder helps to improve the performance on benchmarks of classification and face recognition. This could also be a promising direction for fast training of face recognition models.Comment: Accepted by CVPR2016 Workshop of Robust Features for Computer Visio

    Probabilities in the inflationary multiverse

    Full text link
    Inflationary cosmology leads to the picture of a "multiverse," involving an infinite number of (spatially infinite) post-inflationary thermalized regions, called pocket universes. In the context of theories with many vacua, such as the landscape of string theory, the effective constants of Nature are randomized by quantum processes during inflation. We discuss an analytic estimate for the volume distribution of the constants within each pocket universe. This is based on the conjecture that the field distribution is approximately ergodic in the diffusion regime, when the dynamics of the fields is dominated by quantum fluctuations (rather than by the classical drift). We then propose a method for determining the relative abundances of different types of pocket universes. Both ingredients are combined into an expression for the distribution of the constants in pocket universes of all types.Comment: 18 pages, RevTeX 4, 2 figures. Discussion of the full probability in Sec.VI is sharpened; the conclusions are strengthened. Note added explaining the relation to recent work by Easther, Lim and Martin. Some references adde

    Bounded-Distortion Metric Learning

    Full text link
    Metric learning aims to embed one metric space into another to benefit tasks like classification and clustering. Although a greatly distorted metric space has a high degree of freedom to fit training data, it is prone to overfitting and numerical inaccuracy. This paper presents {\it bounded-distortion metric learning} (BDML), a new metric learning framework which amounts to finding an optimal Mahalanobis metric space with a bounded-distortion constraint. An efficient solver based on the multiplicative weights update method is proposed. Moreover, we generalize BDML to pseudo-metric learning and devise the semidefinite relaxation and a randomized algorithm to approximately solve it. We further provide theoretical analysis to show that distortion is a key ingredient for stability and generalization ability of our BDML algorithm. Extensive experiments on several benchmark datasets yield promising results
    • …
    corecore