7 research outputs found

    Disentangling capabilities for industry 4.0 - an information systems capability perspective

    Get PDF
    Digital technologies revolutionise the manufacturing industry by connecting the physical and digital worlds. The resulting paradigm shift, referred to as Industry 4.0, impacts manufacturing processes and business models. While the ‘why’ and ‘what’ of Industry 4.0 have been extensively researched, the ‘how’ remains poorly understood. Manufacturers struggle with exploiting Industry 4.0’s full potential as a holistic understanding of required Information Systems (IS) capabilities is missing. To foster such understanding, we present a holistic IS capability framework for Industry 4.0, including primary and support capabilities. After developing the framework based on a structured literature review, we refined and evaluated it with ten Industry 4.0 experts from research and practice. We demonstrated its use with a German machinery manufacturer. In sum, we contribute to understanding and analysing IS capabilities for Industry 4.0. Our work serves as a foundation for further theorising on Industry 4.0 and for deriving theory-led design recommendations for manufacturers

    Towards an understanding of the consequences of technology-driven decision support for maritime navigation

    Get PDF
    The maritime industry is undergoing a transformation driven by digitalization and connectivity. There is speculation that in the next two decades the maritime industry will witness changes far exceeding those experienced over the past 100 years. While change is inevitable in the maritime domain, technological developments do not guarantee navigational safety, efficiency, or improved seaway traffic management. The International Maritime Organization (IMO) has adopted the Maritime Autonomous Surface Ships (MASS) concept to define autonomy on a scale from Degrees 1 through 4.\ua0 Investigations into the impact of MASS on various aspects of the maritime sociotechnical system is currently ongoing by academic and industry stakeholders. However, the early adoption of MASS (Degree 1), which is classified as a crewed ship with decision support, remains largely unexplored. Decision support systems are intended to support operator decision-making and improve operator performance. In practice they can cause unintended changes throughout other elements of the maritime sociotechnical system. In the maritime industry, the human is seldom put first in technology design which paradoxically introduces human-automation challenges related to technology acceptance, use, trust, reliance, and risk. The co-existence of humans and automation, as it pertains to navigation and navigational assistance, is explored throughout this thesis. The aims of this thesis are (1) to understand how decision support will impact navigation and navigational assistance from the operator’s perspective and (2) to explore a framework to help reduce the gaps between the design and use of decision support technologies. This thesis advocates for a human-centric approach to automation design and development while exploring the broader impacts upon the maritime sociotechnical system. This work considers three different projects and four individual data collection efforts during 2017-2022. This research took place in Gothenburg, Sweden, and Warsash, UK and includes data from 65 Bridge Officers (navigators) and 16 Vessel Traffic Service (VTS) operators. Two testbeds were used to conduct the research in several full mission bridge simulators, and a virtual reality environment. A mixed methods approach, with a heavier focus on qualitative data, was adopted to understand the research problem. Methodological tools included literature reviews, observations, questionnaires, ship maneuvering data, collective interviews, think-aloud protocol, and consultation with subject matter experts. The data analysis included thematic analysis, subject matter expert consultation, and descriptive statistics.\ua0The results show that operators perceive that decision support will impact their work, but not necessarily as expected. The operators’ positive and negative perceptions are discussed within the frameworks of human-automation interaction, decision-making, and systems thinking. The results point towards gaps in work as it is intended to be done and work as it is done in the user’s context. A user-driven design framework is proposed which allows for a systematic, flexible, and iterative design process capable of testing new technologies while involving all stakeholders. These results have led to the identification of several research gaps in relation to the overall preparedness of the shipping industry to manage the evolution toward smarter ships. This thesis will discuss these findings and advocate for human-centered automation within the quickly evolving maritime industry

    A Novel Machine Learning Classifier Based on a Qualia Modeling Agent (QMA)

    Get PDF
    This dissertation addresses a problem found in supervised machine learning (ML) classification, that the target variable, i.e., the variable a classifier predicts, has to be identified before training begins and cannot change during training and testing. This research develops a computational agent, which overcomes this problem. The Qualia Modeling Agent (QMA) is modeled after two cognitive theories: Stanovich\u27s tripartite framework, which proposes learning results from interactions between conscious and unconscious processes; and, the Integrated Information Theory (IIT) of Consciousness, which proposes that the fundamental structural elements of consciousness are qualia. By modeling the informational relationships of qualia, the QMA allows for retaining and reasoning-over data sets in a non-ontological, non-hierarchical qualia space (QS). This novel computational approach supports concept drift, by allowing the target variable to change ad infinitum without re-training while achieving classification accuracy comparable to or greater than benchmark classifiers. Additionally, the research produced a functioning model of Stanovich\u27s framework, and a computationally tractable working solution for a representation of qualia, which when exposed to new examples, is able to match the causal structure and generate new inferences

    Methods and Models for Industrial Internet of Things-based Business Process Improvement

    Get PDF
    Over the last three decades, the Internet of Things (IoT) has gained significant importance and has been implemented in many private, public, and business contexts. Leveraging and combining the IoT's capabilities enables far-reaching transformations and disruptive innovations that are increasingly recognized, especially by industrial organizations. In this regard, the Industrial IoT (IIoT) paradigm has emerged, describing the use of IIoT technology in the industrial domain. One key use of the IIoT is the incremental or radical improvement of business processes. This goal-oriented change of business processes with IIoT technology to accomplish organizational goals more effectively is called IIoT-based Business Process Improvement (BPI). Many use cases demonstrate the benefits of IIoT-based BPI for all types of industrial organizations. However, the interconnection between IIoT and BPI lacks theoretical knowledge and applicable artifacts that support practitioners. Moreover, a significant number of related projects fail or do not achieve the anticipated benefits. This issue has drawn attention in recent scholarly literature, which calls for further research. The dissertation at hand approaches this research gap by extending and advancing existing knowledge and providing valuable contributions to managerial practice. Three critical challenges for conducting IIoT-based BPI projects are addressed in particular: First, the essential characteristics of IIoT-based BPI applications are explored. This enables their classification and a foundational comprehension of the research field. Second, the required capabilities to leverage IIoT for BPI are identified. On this basis, industrial organizations can assess their maturity and readiness for implementing corresponding applications. Third, the identification, specification, and selection of appropriate applications are addressed. These activities enable the successful practical execution of IIoT projects with BPI potential

    Methods and Models for Industrial Internet of Things-based Business Process Improvement

    Get PDF
    Over the last three decades, the Internet of Things (IoT) has gained significant importance and has been implemented in many private, public, and business contexts. Leveraging and combining the IoT's capabilities enables far-reaching transformations and disruptive innovations that are increasingly recognized, especially by industrial organizations. In this regard, the Industrial IoT (IIoT) paradigm has emerged, describing the use of IIoT technology in the industrial domain. One key use of the IIoT is the incremental or radical improvement of business processes. This goal-oriented change of business processes with IIoT technology to accomplish organizational goals more effectively is called IIoT-based Business Process Improvement (BPI). Many use cases demonstrate the benefits of IIoT-based BPI for all types of industrial organizations. However, the interconnection between IIoT and BPI lacks theoretical knowledge and applicable artifacts that support practitioners. Moreover, a significant number of related projects fail or do not achieve the anticipated benefits. This issue has drawn attention in recent scholarly literature, which calls for further research. The dissertation at hand approaches this research gap by extending and advancing existing knowledge and providing valuable contributions to managerial practice. Three critical challenges for conducting IIoT-based BPI projects are addressed in particular: First, the essential characteristics of IIoT-based BPI applications are explored. This enables their classification and a foundational comprehension of the research field. Second, the required capabilities to leverage IIoT for BPI are identified. On this basis, industrial organizations can assess their maturity and readiness for implementing corresponding applications. Third, the identification, specification, and selection of appropriate applications are addressed. These activities enable the successful practical execution of IIoT projects with BPI potential

    Enhancing user experience and safety in the context of automated driving through uncertainty communication

    Get PDF
    Operators of highly automated driving systems may exhibit behaviour characteristic of overtrust issues due to an insufficient awareness of automation fallibility. Consequently, situation awareness in critical situations is reduced and safe driving performance following emergency takeovers is impeded. Previous research has indicated that conveying system uncertainties may alleviate these issues. However, existing approaches require drivers to attend the uncertainty information with focal attention, likely resulting in missed changes when engaged in non-driving-related tasks. This research project expands on existing work regarding uncertainty communication in the context of automated driving. Specifically, it aims to investigate the implications of conveying uncertainties under consideration of non-driving-related tasks and, based on the outcomes, develop and evaluate an uncertainty display that enhances both user experience and driving safety. In a first step, the impact of visually conveying uncertainties was investigated under consideration of workload, trust, monitoring behaviour, non-driving-related tasks, takeover performance, and situation awareness. For this, an anthropomorphic visual uncertainty display located in the instrument cluster was developed. While the hypothesised benefits for trust calibration and situation awareness were confirmed, the results indicate that visually conveying uncertainties leads to an increased perceived effort due to a higher frequency of monitoring glances. Building on these findings, peripheral awareness displays were explored as a means for conveying uncertainties without the need for focused attention to reduce monitoring glances. As a prerequisite for developing such a display, a systematic literature review was conducted to identify evaluation methods and criteria, which were then coerced into a comprehensive framework. Grounded in this framework, a peripheral awareness display for uncertainty communication was developed and subsequently compared with the initially proposed visual anthropomorphic uncertainty display in a driving simulator study. Eye tracking and subjective workload data indicate that the peripheral awareness display reduces the monitoring effort relative to the visual display, while driving performance and trust data highlight that the benefits of uncertainty communication are maintained. Further, this research project addresses the implications of increasing the functional detail of uncertainty information. Results of a driving simulator study indicate that particularly workload should be considered when increasing the functional detail of uncertainty information. Expanding upon this approach, an augmented reality display concept was developed and a set of visual variables was explored in a forced choice sorting task to assess their ordinal characteristics. Particularly changes in colour hue and animation-based variables received high preference ratings and were ordered consistently from low to high uncertainty. This research project has contributed a series of novel insights and ideas to the field of human factors in automated driving. It confirmed that conveying uncertainties improves trust calibration and situation awareness, but highlighted that using a visual display lessens the positive effects. Addressing this shortcoming, a peripheral awareness display was designed applying a dedicated evaluation framework. Compared with the previously employed visual display, it decreased monitoring glances and, consequentially, perceived effort. Further, an augmented reality-based uncertainty display concept was developed to minimise the workload increments associated with increases in the functional detail of uncertainty information.</div
    corecore