74 research outputs found

    Fuzzy Interval-Valued Multi Criteria Based Decision Making for Ranking Features in Multi-Modal 3D Face Recognition

    Get PDF
    Soodamani Ramalingam, 'Fuzzy interval-valued multi criteria based decision making for ranking features in multi-modal 3D face recognition', Fuzzy Sets and Systems, In Press version available online 13 June 2017. This is an Open Access paper, made available under the Creative Commons license CC BY 4.0 https://creativecommons.org/licenses/by/4.0/This paper describes an application of multi-criteria decision making (MCDM) for multi-modal fusion of features in a 3D face recognition system. A decision making process is outlined that is based on the performance of multi-modal features in a face recognition task involving a set of 3D face databases. In particular, the fuzzy interval valued MCDM technique called TOPSIS is applied for ranking and deciding on the best choice of multi-modal features at the decision stage. It provides a formal mechanism of benchmarking their performances against a set of criteria. The technique demonstrates its ability in scaling up the multi-modal features.Peer reviewedProo

    A method to multi-attribute decision making with picture fuzzy information based on Muirhead mean

    Get PDF
    The recently proposed picture fuzzy set (PFS) is a powerful tool for handling fuzziness and uncertainty. PFS is character-ized by a positive membership degree, a neutral membership degree, and a negative membership degree, making it more suitable and useful than the intuitionistic fuzzy set (IFS) when dealing with multi-attribute decision making (MADM). The aim of this paper is to develop some aggregation operators for fusing picture fuzzy information. Considering the Muirhead mean (MM) is an aggregation technology which can consider the interrelationship among all aggregated ar-guments, we extend MM to picture fuzzy context and propose a family of picture fuzzy Muirhead mean operators. In addition, we investigate some properties and special cases of the proposed operators. Further, we develop a novel meth-od to MADM in which the attribute values take the form of picture fuzzy numbers (PFNs). Finally, a numerical example is provided to illustrate the validity of the proposed method

    Extension of the fuzzy integral for general fuzzy set-valued information

    Get PDF
    The fuzzy integral (FI) is an extremely flexible aggregation operator. It is used in numerous applications, such as image processing, multicriteria decision making, skeletal age-at-death estimation, and multisource (e.g., feature, algorithm, sensor, and confidence) fusion. To date, a few works have appeared on the topic of generalizing Sugeno's original real-valued integrand and fuzzy measure (FM) for the case of higher order uncertain information (both integrand and measure). For the most part, these extensions are motivated by, and are consistent with, Zadeh's extension principle (EP). Namely, existing extensions focus on fuzzy number (FN), i.e., convex and normal fuzzy set- (FS) valued integrands. Herein, we put forth a new definition, called the generalized FI (gFI), and efficient algorithm for calculation for FS-valued integrands. In addition, we compare the gFI, numerically and theoretically, with our non-EP-based FI extension called the nondirect FI (NDFI). Examples are investigated in the areas of skeletal age-at-death estimation in forensic anthropology and multisource fusion. These applications help demonstrate the need and benefit of the proposed work. In particular, we show there is not one supreme technique. Instead, multiple extensions are of benefit in different contexts and applications

    Some q-rung orthopair fuzzy Muirhead means with their application to multi-attribute group decision making

    Get PDF
    Recently proposed q-rung orthopair fuzzy set (q-ROFS) is a powerful and effective tool to describe fuzziness, uncertainty and vagueness. The prominent feature of q-ROFS is that the sum and square sum of membership and non-membership degrees are allowed to be greater than one with the sum of qth power of the membership degree and qth power of the non-membership degree is less than or equal to one. This characteristic makes q-ROFS more powerful and useful than intuitionistic fuzzy set (IFS) and Pythagorean fuzzy set (PFS). The aim of this paper is to develop some aggregation operators for fusing q-rung orthopair fuzzy information. As the Muirhead mean (MM) is considered as a useful aggregation technology which can capture interrelationships among all aggregated arguments, we extend the MM to q-rung orthopair fuzzy environment and propose a family of q-rung orthopair fuzzy Muirhead mean operators. Moreover, we investigate some desirable properties and special cases of the proposed operators. Further, we apply the proposed operators to solve multi-attribute group decision making (MAGDM) problems. Finally, a numerical instance as well as some comparative analysis are provided to demonstrate the validity and superiorities of the proposed method

    Interval type-2 Atanassov-intuitionistic fuzzy logic for uncertainty modelling

    Get PDF
    This thesis investigates a new paradigm for uncertainty modelling by employing a new class of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark a shift from computing with numbers towards computing with words have made remarkable impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisation of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with particular reference to interval type-2 fuzzy logic systems, is that the membership functions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy logic systems an advantage over their type-1 counterparts which have precise membership functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncertainty, they are not able to adequately handle an indeterminate/neutral characteristic of a set, because interval type-2 fuzzy sets are only specified by membership functions with an implicit assertion that the non-membership functions are complements of the membership functions (lower or upper). In a real life scenario, it is not necessarily the case that the non-membership function of a set is complementary to the membership function. There may be some degree of hesitation arising from ignorance or a complete lack of interest concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another generalisation of the classical fuzzy set, captures this thought process by simultaneously defining a fuzzy set with membership and non-membership functions such that the sum of both membership and non-membership functions is less than or equal to 1. In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzzy set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intuitionistic fuzzy logic system is rigorously and systematically formulated. In order to assess this thesis investigates a new paradigm for uncertainty modelling by employing a new class of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark shift from computing with numbers towards computing with words have made remarkable impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisation of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with particular reference to interval type-2 fuzzy logic systems, is that the membership functions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy logic systems an advantage over their type-1 counterparts which have precise membership functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncertainty, they are not able to adequately handle an indeterminate/neutral characteristic of a set, because interval type-2 fuzzy sets are only specified by membership functions with an implicit assertion that the non-membership functions are complements of the membership functions (lower or upper). In a real life scenario, it is not necessarily the case that the non-membership function of a set is complementary to the membership function. There may be some degree of hesitation arising from ignorance or a complete lack of interest concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another generalisation of the classical fuzzy set, captures this thought process by simultaneously defining a fuzzy set with membership and non-membership functions such that the sum of both membership and non-membership functions is less than or equal to 1. In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzz set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intuitionistic fuzzy logic system is rigorously and systematically formulated. In order to assess the viability and efficacy of the developed framework, the possibilities of the optimisation of the parameters of this class of fuzzy systems are rigorously examined. First, the parameters of the developed model are optimised using one of the most popular fuzzy logic optimisation algorithms such as gradient descent (first-order derivative) algorithm and evaluated on publicly available benchmark datasets from diverse domains and characteristics. It is shown that the new interval type-2 Atanassov intuitionistic fuzzy logic system is able to handle uncertainty well through the minimisation of the error of the system compared with other approaches on the same problem instances and performance criteria. Secondly, the parameters of the proposed framework are optimised using a decoupledextended Kalman filter (second-order derivative) algorithm in order to address the shortcomings of the first-order gradient descent method. It is shown statistically that the performance of this new framework with fuzzy membership and non-membership functions is significantly better than the classical interval type-2 fuzzy logic systems which have only the fuzzy membership functions, and its type-1 counterpart which are specified by single membership and non-membership functions. The model is also assessed using a hybrid learning of decoupled extended Kalman filter and gradient descent methods. The proposed framework with hybrid learning algorithm is evaluated by comparing it with existing approaches reported in the literature on the same problem instances and performance metrics. The simulation results have demonstrated the potential benefits of using the proposed framework in uncertainty modelling. In the overall, the fusion of these two concepts (interval type-2 fuzzy logic system and Atanassov intuitionistic fuzzy logic system) provides a synergistic capability in dealing with imprecise and vague information

    Fuzzy Systems

    Get PDF
    This book presents some recent specialized works of theoretical study in the domain of fuzzy systems. Over eight sections and fifteen chapters, the volume addresses fuzzy systems concepts and promotes them in practical applications in the following thematic areas: fuzzy mathematics, decision making, clustering, adaptive neural fuzzy inference systems, control systems, process monitoring, green infrastructure, and medicine. The studies published in the book develop new theoretical concepts that improve the properties and performances of fuzzy systems. This book is a useful resource for specialists, engineers, professors, and students

    Application of Generalized Choquet Fuzzy Integral Method in the Sustainability Rating of Green Buildings based on the BSAM scheme

    Get PDF
    The need to reduce the impact of building projects on the sustainability of the built environment and improve the use of resources necessitated several interventions such as the development of methods to assess building impacts and improve the sustainability performance of buildings. Using the BSAM scheme – a green building rating system developed specifically for the sub-Saharan region of Africa, the generalized Choquet fuzzy integral method was employed to determine the importance weights of the sustainability assessment criteria. Data collected from industry experts form the base inputs for the impact of the various sustainability criteria based on the local variations. Consequently, the building sustainability evaluation index and grading scheme were developed to measure and evaluate the sustainability performance of buildings. The developed sustainability rating model was validated in four real-world case studies to demonstrate its usefulness and robustness in practice. The findings revealed that the conventional approach of aggregation of points used by the existing green rating tools is less effective in dealing with criteria that have interactive characteristics. Also, assessment criteria such as sustainable construction practices, transportation, and energy have a significant impact on the sustainability of buildings. The study provides substantial contributions to the existing body of knowledge about green building assessment systems for built environment stakeholders, both from the theoretical and practical perspectives

    Interval type-2 Atanassov-intuitionistic fuzzy logic for uncertainty modelling

    Get PDF
    This thesis investigates a new paradigm for uncertainty modelling by employing a new class of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark a shift from computing with numbers towards computing with words have made remarkable impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisation of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with particular reference to interval type-2 fuzzy logic systems, is that the membership functions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy logic systems an advantage over their type-1 counterparts which have precise membership functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncertainty, they are not able to adequately handle an indeterminate/neutral characteristic of a set, because interval type-2 fuzzy sets are only specified by membership functions with an implicit assertion that the non-membership functions are complements of the membership functions (lower or upper). In a real life scenario, it is not necessarily the case that the non-membership function of a set is complementary to the membership function. There may be some degree of hesitation arising from ignorance or a complete lack of interest concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another generalisation of the classical fuzzy set, captures this thought process by simultaneously defining a fuzzy set with membership and non-membership functions such that the sum of both membership and non-membership functions is less than or equal to 1. In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzzy set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intuitionistic fuzzy logic system is rigorously and systematically formulated. In order to assess this thesis investigates a new paradigm for uncertainty modelling by employing a new class of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark shift from computing with numbers towards computing with words have made remarkable impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisation of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with particular reference to interval type-2 fuzzy logic systems, is that the membership functions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy logic systems an advantage over their type-1 counterparts which have precise membership functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncertainty, they are not able to adequately handle an indeterminate/neutral characteristic of a set, because interval type-2 fuzzy sets are only specified by membership functions with an implicit assertion that the non-membership functions are complements of the membership functions (lower or upper). In a real life scenario, it is not necessarily the case that the non-membership function of a set is complementary to the membership function. There may be some degree of hesitation arising from ignorance or a complete lack of interest concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another generalisation of the classical fuzzy set, captures this thought process by simultaneously defining a fuzzy set with membership and non-membership functions such that the sum of both membership and non-membership functions is less than or equal to 1. In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzz set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intuitionistic fuzzy logic system is rigorously and systematically formulated. In order to assess the viability and efficacy of the developed framework, the possibilities of the optimisation of the parameters of this class of fuzzy systems are rigorously examined. First, the parameters of the developed model are optimised using one of the most popular fuzzy logic optimisation algorithms such as gradient descent (first-order derivative) algorithm and evaluated on publicly available benchmark datasets from diverse domains and characteristics. It is shown that the new interval type-2 Atanassov intuitionistic fuzzy logic system is able to handle uncertainty well through the minimisation of the error of the system compared with other approaches on the same problem instances and performance criteria. Secondly, the parameters of the proposed framework are optimised using a decoupledextended Kalman filter (second-order derivative) algorithm in order to address the shortcomings of the first-order gradient descent method. It is shown statistically that the performance of this new framework with fuzzy membership and non-membership functions is significantly better than the classical interval type-2 fuzzy logic systems which have only the fuzzy membership functions, and its type-1 counterpart which are specified by single membership and non-membership functions. The model is also assessed using a hybrid learning of decoupled extended Kalman filter and gradient descent methods. The proposed framework with hybrid learning algorithm is evaluated by comparing it with existing approaches reported in the literature on the same problem instances and performance metrics. The simulation results have demonstrated the potential benefits of using the proposed framework in uncertainty modelling. In the overall, the fusion of these two concepts (interval type-2 fuzzy logic system and Atanassov intuitionistic fuzzy logic system) provides a synergistic capability in dealing with imprecise and vague information
    corecore