159 research outputs found

    Machine learning and blockchain technologies for cybersecurity in connected vehicles

    Get PDF
    Future connected and autonomous vehicles (CAVs) must be secured againstcyberattacks for their everyday functions on the road so that safety of passengersand vehicles can be ensured. This article presents a holistic review of cybersecurityattacks on sensors and threats regardingmulti-modal sensor fusion. A compre-hensive review of cyberattacks on intra-vehicle and inter-vehicle communicationsis presented afterward. Besides the analysis of conventional cybersecurity threatsand countermeasures for CAV systems,a detailed review of modern machinelearning, federated learning, and blockchain approach is also conducted to safe-guard CAVs. Machine learning and data mining-aided intrusion detection systemsand other countermeasures dealing with these challenges are elaborated at theend of the related section. In the last section, research challenges and future direc-tions are identified

    Detailed Review on The Denial of Service (DoS) and Distributed Denial of Service (DDoS) Attacks in Software Defined Networks (SDNs) and Defense Strategies

    Get PDF
    The development of Software Defined Networking (SDN) has altered the landscape of computer networking in recent years. Its scalable architecture has become a blueprint for the design of several advanced future networks. To achieve improve and efficient monitoring, control and management capabilities of the network, software defined networks differentiate or decouple the control logic from the data forwarding plane. As a result, logical control is centralized solely in the controller. Due to the centralized nature, SDNs are exposed to several vulnerabilities such as Spoofing, Flooding, and primarily Denial of Service (DoS) and Distributed Denial of Service (DDoS) among other attacks. In effect, the performance of SDN degrades based on these attacks. This paper presents a comprehensive review of several DoS and DDoS defense/mitigation strategies and classifies them into distinct classes with regards to the methodologies employed. Furthermore, suggestions were made to enhance current mitigation strategies accordingly

    Resource Allocation in Networking and Computing Systems: A Security and Dependability Perspective

    Get PDF
    In recent years, there has been a trend to integrate networking and computing systems, whose management is getting increasingly complex. Resource allocation is one of the crucial aspects of managing such systems and is affected by this increased complexity. Resource allocation strategies aim to effectively maximize performance, system utilization, and profit by considering virtualization technologies, heterogeneous resources, context awareness, and other features. In such complex scenario, security and dependability are vital concerns that need to be considered in future computing and networking systems in order to provide the future advanced services, such as mission-critical applications. This paper provides a comprehensive survey of existing literature that considers security and dependability for resource allocation in computing and networking systems. The current research works are categorized by considering the allocated type of resources for different technologies, scenarios, issues, attributes, and solutions. The paper presents the research works on resource allocation that includes security and dependability, both singularly and jointly. The future research directions on resource allocation are also discussed. The paper shows how there are only a few works that, even singularly, consider security and dependability in resource allocation in the future computing and networking systems and highlights the importance of jointly considering security and dependability and the need for intelligent, adaptive and robust solutions. This paper aims to help the researchers effectively consider security and dependability in future networking and computing systems.publishedVersio

    IoT Security Evolution: Challenges and Countermeasures Review

    Get PDF
    Internet of Things (IoT) architecture, technologies, applications and security have been recently addressed by a number of researchers. Basically, IoT adds internet connectivity to a system of intelligent devices, machines, objects and/or people. Devices are allowed to automatically collect and transmit data over the Internet, which exposes them to serious attacks and threats. This paper provides an intensive review of IoT evolution with primary focusing on security issues together with the proposed countermeasures. Thus, it outlines the IoT security challenges as a future roadmap of research for new researchers in this domain

    Packet filter performance monitor (anti-DDOS algorithm for hybrid topologies)

    Get PDF
    DDoS attacks are increasingly becoming a major problem. According to Arbor Networks, the largest DDoS attack reported by a respondent in 2015 was 500 Gbps. Hacker News stated that the largest DDoS attack as of March 2016 was over 600 Gbps, and the attack targeted the entire BBC website. With this increasing frequency and threat, and the average DDoS attack duration at about 16 hours, we know for certain that DDoS attacks will not be going away anytime soon. Commercial companies are not effectively providing mitigation techniques against these attacks, considering that major corporations face the same challenges. Current security appliances are not strong enough to handle the overwhelming traffic that accompanies current DDoS attacks. There is also a limited research on solutions to mitigate DDoS attacks. Therefore, there is a need for a means of mitigating DDoS attacks in order to minimize downtime. One possible solution is for organizations to implement their own architectures that are meant to mitigate DDoS attacks. In this dissertation, we present and implement an architecture that utilizes an activity monitor to change the states of firewalls based on their performance in a hybrid network. Both firewalls are connected inline. The monitor is mirrored to monitor the firewall states. The monitor reroutes traffic when one of the firewalls become overwhelmed due to a HTTP DDoS flooding attack. The monitor connects to the API of both firewalls. The communication between the rewalls and monitor is encrypted using AES, based on PyCrypto Python implementation. This dissertation is structured in three parts. The first found the weakness of the hardware firewall and determined its threshold based on spike and endurance tests. This was achieved by flooding the hardware firewall with HTTP packets until the firewall became overwhelmed and unresponsive. The second part implements the same test as the first, but targeted towards the virtual firewall. The same parameters, test factors, and determinants were used; however a different load tester was utilized. The final part was the implementation and design of the firewall performance monitor. The main goal of the dissertation is to minimize downtime when network firewalls are overwhelmed as a result of a DDoS attack

    Cyberattacks and Security of Cloud Computing: A Complete Guideline

    Get PDF
    Cloud computing is an innovative technique that offers shared resources for stock cache and server management. Cloud computing saves time and monitoring costs for any organization and turns technological solutions for large-scale systems into server-to-service frameworks. However, just like any other technology, cloud computing opens up many forms of security threats and problems. In this work, we focus on discussing different cloud models and cloud services, respectively. Next, we discuss the security trends in the cloud models. Taking these security trends into account, we move to security problems, including data breaches, data confidentiality, data access controllability, authentication, inadequate diligence, phishing, key exposure, auditing, privacy preservability, and cloud-assisted IoT applications. We then propose security attacks and countermeasures specifically for the different cloud models based on the security trends and problems. In the end, we pinpoint some of the futuristic directions and implications relevant to the security of cloud models. The future directions will help researchers in academia and industry work toward cloud computing security

    Blockchain-based secure Unmanned Aerial Vehicles (UAV) in network design and optimization

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have emerged as transformative technologies with wide ranging applications, including surveillance, mapping, remote sensing, search and rescue, and disaster management. As sophisticated Unmanned Aerial Vehicle (UAV) increasingly operate in collaborative swarms, joint optimization challenges arise, such as flight trajectories, scheduling, altitude, Aerial Base Stations (ABS), energy harvesting, power transfer, resource allocation, and power consumption. However, the widespread adoption of UAV networks has been hindered by challenges related to optimal Three-Dimensional (3D) deployment, trajectory optimization, wireless and computational resource allocation, and limited flight durations when operating as ABSs. Crucially, the broadcast nature of UAV-assisted wireless networks renders them susceptible to privacy and security threats such as Distributed Denial-of-Service (DDoS) replay, impersonation, message injection, spoofing, malware infection, eavesdropping, and line of-interference attacks. This study aims to address these privacy and security challenges by leveraging blockchain technology’s potential to secure data and delivery in UAV communication networks. With amalgamation of blockchain, this study seeks to harness its inherent immutability and cryptographic properties to ensure secure and tamper-proof data transmission, promote trust and transparency among stakeholders, enable automated Smart Contract (SC) for secure delivery, and facilitate standardization and interoperability across platforms. Specifically, blockchain can secure UAV network privacy and security through data privacy and integrity, secure delivery and tracking, access control, identity management, and resilience against cyber-attacks. Furthermore, this study explores the synergies among blockchain, UAV networks, and Federated Learning (FL) for privacy-preserving intelligent applications in healthcare and wireless networks. FL enables collaborative training of Machine Learning (ML) models without sharing raw data, ensuring data privacy. By integrating FL with blockchain-assisted UAV networks, this study aims to revolutionize future intelligent applications, particularly in time-sensitive and privacy-critical domains. Overall, this thesis contributes to the field by providing a comprehensive analysis of integrating blockchain, FL, and UAV networks, beyond Fifth-Generation (5G) communication networks. It addresses privacy and security concerns related to data and delivery, thereby enabling secure, reliable, and intelligent applications in various sectors
    • …
    corecore