143 research outputs found

    Design and implementation of intelligent packet filtering in IoT microcontroller-based devices

    Full text link
    Internet of Things (IoT) devices are increasingly pervasive and essential components in enabling new applications and services. However, their widespread use also exposes them to exploitable vulnerabilities and flaws that can lead to significant losses. In this context, ensuring robust cybersecurity measures is essential to protect IoT devices from malicious attacks. However, the current solutions that provide flexible policy specifications and higher security levels for IoT devices are scarce. To address this gap, we introduce T800, a low-resource packet filter that utilizes machine learning (ML) algorithms to classify packets in IoT devices. We present a detailed performance benchmarking framework and demonstrate T800's effectiveness on the ESP32 system-on-chip microcontroller and ESP-IDF framework. Our evaluation shows that T800 is an efficient solution that increases device computational capacity by excluding unsolicited malicious traffic from the processing pipeline. Additionally, T800 is adaptable to different systems and provides a well-documented performance evaluation strategy for security ML-based mechanisms on ESP32-based IoT systems. Our research contributes to improving the cybersecurity of resource-constrained IoT devices and provides a scalable, efficient solution that can be used to enhance the security of IoT systems.Comment: 11 pages, under revie

    Driving sleepiness detection using electrooculogram analysis and grey wolf optimizer

    Get PDF
    In modern society, providing safe and collision-free travel is essential. Therefore, detecting the drowsiness state of the driver before its ability to drive is compromised. For this purpose, an automated hybrid sleepiness classification system that combines the artificial neural network and gray wolf optimizer is proposed to distinguish human Sleepiness and fatigue. The proposed system is tested on data collected from 15 drivers (male and female) in alert and sleep-deprived conditions where physiological signals are used as sleep markers. To evaluate the performance of the proposed algorithm, k-nearest neighbors (k-NN), support vector machines (SVM), and artificial neural networks (ANN) classifiers have been used. The results show that the proposed hybrid method provides 99.6% accuracy, while the SVM classifier provides 93.0% accuracy when the kernel is (RBF) and outlier (0.1). Furthermore, the k-NN classifier provides 96.7% accuracy, whereas the standalone ANN algorithm provides 97.7% accuracy

    Artificial neural networks for predicting the generation of acetaldehyde in pet resin in the process of injection of plastic packages

    Get PDF
    The industrial production of preforms for the manufacture of PET bottles, during the plastic injection process, is essential to regulate the drying temperature of the PET resin, to control the generation of Acetaldehyde (ACH), which alters the flavor of carbonated or non-carbonated drinks, giving the drink a citrus flavor and putting in doubt the quality of packaged products. In this work, an Artificial Neural Network (ANN) of the Backpropagation type (Cascadeforwardnet) is specified to support the decision-making process in controlling the ideal drying temperature of the PET resin, allowing specialists to make the necessary temperature regulation decisions  for the best performance by decreasing ACH levels. The materials and methods were applied according to the manufacturer\u27s characteristics on the moisture in the PET resin grain, which may contain between 50 ppm and 100 ppm of ACH. Data were collected for the method analysis, according to temperatures and residence times used in the blow injection process in the manufacture of the bottle preform, the generation of ACH from the PET bottle after solid post-condensation stage reached residual ACH levels below (3-4) ppm, according to the desired specification, reaching levels below 1 ppm. The results found through the Computational Intelligence (IC) techniques applied by the ANNs, where they allowed the prediction of the ACH levels generated in the plastic injection process of the bottle packaging preform, allowing an effective management of the parameters of production, assisting in strategic decision making regarding the use of temperature control during the drying process of PET resin

    Cyber physical anomaly detection for smart homes: A survey

    Get PDF
    Twenty-first-century human beings spend more than 90\% of their time in indoor environments. The emergence of cyber systems in the physical world has a plethora of benefits towards optimising resources and improving living standards. However, because of significant vulnerabilities in cyber systems, connected physical spaces are exposed to privacy risks in addition to existing and novel security challenges. To mitigate these risks and challenges, researchers opt for anomaly detection techniques. Particularly in smart home environments, the anomaly detection techniques are either focused on network traffic (cyber phenomena) or environmental (physical phenomena) sensors' data. This paper reviewed anomaly detection techniques presented for smart home environments using cyber data and physical data in the past. We categorise anomalies as known and unknown in smart homes. We also compare publicly available datasets for anomaly detection in smart home environments. In the end, we discuss essential key considerations and provide a decision-making framework towards supporting the implementation of anomaly detection systems for smart homes

    Mitigating Insider Threat Risks in Cyber-physical Manufacturing Systems

    Get PDF
    Cyber-Physical Manufacturing System (CPMS)—a next generation manufacturing system—seamlessly integrates digital and physical domains via the internet or computer networks. It will enable drastic improvements in production flexibility, capacity, and cost-efficiency. However, enlarged connectivity and accessibility from the integration can yield unintended security concerns. The major concern arises from cyber-physical attacks, which can cause damages to the physical domain while attacks originate in the digital domain. Especially, such attacks can be performed by insiders easily but in a more critical manner: Insider Threats. Insiders can be defined as anyone who is or has been affiliated with a system. Insiders have knowledge and access authentications of the system\u27s properties, therefore, can perform more serious attacks than outsiders. Furthermore, it is hard to detect or prevent insider threats in CPMS in a timely manner, since they can easily bypass or incapacitate general defensive mechanisms of the system by exploiting their physical access, security clearance, and knowledge of the system vulnerabilities. This thesis seeks to address the above issues by developing an insider threat tolerant CPMS, enhanced by a service-oriented blockchain augmentation and conducting experiments & analysis. The aim of the research is to identify insider threat vulnerabilities and improve the security of CPMS. Blockchain\u27s unique distributed system approach is adopted to mitigate the insider threat risks in CPMS. However, the blockchain limits the system performance due to the arbitrary block generation time and block occurrence frequency. The service-oriented blockchain augmentation is providing physical and digital entities with the blockchain communication protocol through a service layer. In this way, multiple entities are integrated by the service layer, which enables the services with less arbitrary delays while retaining their strong security from the blockchain. Also, multiple independent service applications in the service layer can ensure the flexibility and productivity of the CPMS. To study the effectiveness of the blockchain augmentation against insider threats, two example models of the proposed system have been developed: Layer Image Auditing System (LIAS) and Secure Programmable Logic Controller (SPLC). Also, four case studies are designed and presented based on the two models and evaluated by an Insider Attack Scenario Assessment Framework. The framework investigates the system\u27s security vulnerabilities and practically evaluates the insider attack scenarios. The research contributes to the understanding of insider threats and blockchain implementations in CPMS by addressing key issues that have been identified in the literature. The issues are addressed by EBIS (Establish, Build, Identify, Simulation) validation process with numerical experiments and the results, which are in turn used towards mitigating insider threat risks in CPMS

    Cyber Security and Critical Infrastructures 2nd Volume

    Get PDF
    The second volume of the book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles, including an editorial that explains the current challenges, innovative solutions and real-world experiences that include critical infrastructure and 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems

    Industrial control systems cybersecurity analysis and countermeasures

    Get PDF
    Industrial Control Systems (ICS) are frequently used in the manufacturing industry and critical infrastructures, such as water, oil and transportation. Disruption of these industries could have disastrous consequences, leading to financial loss or even human lives. Over time, technological development has improved ICS components; however, little research has been done to improve its security posture. In this research, a novel attack vector addressed to the Input and Output memory of the latest SIMATIC S7-1500 PLC is presented. The results obtained during the experimentation process show that attacks on the PLC memory can have a significantly detrimental effect on the operations of the control system. Furthermore, this research describes implements and evaluates the physical, hybrid and virtual model of a Clean Water Supply System developed for the cybersecurity analysis of the Industrial Control System. The physical testbed is implemented on the Festo MPA platform, while the virtual representation of this platform is implemented in MATLAB. The results obtained during the evaluation of the three testbeds show the strengths and weaknesses of each implementation. Likewise, this research proposes two approaches for Industrial Control Systems cyber-security analysis. The first approach involves an attack detection and mitigation mechanism that focuses on the input memory of PLC and is implemented as part of its code. The response mechanism involves three different techniques: optimized data blocks, switching between control strategies, and obtaining sensor readings directly from the analogue channel. The Clean Water Supply System described above is employed for the practical evaluation of this approach. The second approach corresponds to a supervised energy-based system to anomaly detection using a novel energy-based dataset. The results obtained during the experimentation process show that machine learning algorithms can classify the variations of energy produced by the execution of cyber-attacks as anomalous. The results show the feasibility of the approach presented in this research by achieving an F1-Score of 95.5%, and 6.8% FNR with the Multilayer Perceptron Classifier

    IMAT: A Lightweight IoT Network Intrusion Detection System based on Machine Learning techniques

    Get PDF
    Internet of Things (IoT) is one of the fast-expanding technologies nowadays, and promises to be revolutionary for the near future. IoT systems are in fact an incredible convenience due to centralized and computerized control of any electronic device. This technology allows various physical devices, home applications, vehicles, appliances, etc., to be interconnected and exposed to the Internet. On the other hand, it entails the fundamental need to protect the network from adversarial and unwanted alterations. To prevent such threats it is necessary to appeal to Intrusion Detection Systems (IDS), which can be used in information environments to monitor identified threats or anomalies. The most recent and efficient IDS applications involve the use of Machine Learning (ML) techniques which can automatically detect and prevent malicious attacks, such as distributed denial-of-service (DDoS), which represents a recurring thread to IoT networks in the last years. The work presented on this thesis comes with double purpose: build and test different light Machine Learning models which achieve great performance by running on resource-constrained devices; and at the same time we present a novel Network-based Intrusion Detection System based on the latter devices which can automatically detect IoT attack traffic. Our proposed system consists on deploying small low-powered devices to each component of an IoT environment where each device performs Machine Learning based Intrusion Detection at network level. In this work we describe and train different light-ML models which are tested on Raspberry Pis and FPGAs boards. The performance of such classifiers detecting benign and malicious traffic is presented and compared by response time, accuracy, precision, recall, f1-score and ROC-AUC metrics. The aim of this work is to test these machine learning models on recent datasets with the purpose of finding the most performing ones which can be used for intrusion-defense over IoT environments characterized by high flexibility, easy-installation and efficiency. The obtained results are above 0.99\% of accuracy for different models and they indicate that the proposed system can bring a remarkable layer of security. We show how Machine Learning applied to small low-cost devices is an efficient and versatile combination characterized by a bright future ahead.Internet of Things (IoT) is one of the fast-expanding technologies nowadays, and promises to be revolutionary for the near future. IoT systems are in fact an incredible convenience due to centralized and computerized control of any electronic device. This technology allows various physical devices, home applications, vehicles, appliances, etc., to be interconnected and exposed to the Internet. On the other hand, it entails the fundamental need to protect the network from adversarial and unwanted alterations. To prevent such threats it is necessary to appeal to Intrusion Detection Systems (IDS), which can be used in information environments to monitor identified threats or anomalies. The most recent and efficient IDS applications involve the use of Machine Learning (ML) techniques which can automatically detect and prevent malicious attacks, such as distributed denial-of-service (DDoS), which represents a recurring thread to IoT networks in the last years. The work presented on this thesis comes with double purpose: build and test different light Machine Learning models which achieve great performance by running on resource-constrained devices; and at the same time we present a novel Network-based Intrusion Detection System based on the latter devices which can automatically detect IoT attack traffic. Our proposed system consists on deploying small low-powered devices to each component of an IoT environment where each device performs Machine Learning based Intrusion Detection at network level. In this work we describe and train different light-ML models which are tested on Raspberry Pis and FPGAs boards. The performance of such classifiers detecting benign and malicious traffic is presented and compared by response time, accuracy, precision, recall, f1-score and ROC-AUC metrics. The aim of this work is to test these machine learning models on recent datasets with the purpose of finding the most performing ones which can be used for intrusion-defense over IoT environments characterized by high flexibility, easy-installation and efficiency. The obtained results are above 0.99\% of accuracy for different models and they indicate that the proposed system can bring a remarkable layer of security. We show how Machine Learning applied to small low-cost devices is an efficient and versatile combination characterized by a bright future ahead
    • …
    corecore