8,449 research outputs found

    Hete-CF: Social-Based Collaborative Filtering Recommendation using Heterogeneous Relations

    Full text link
    Collaborative filtering algorithms haven been widely used in recommender systems. However, they often suffer from the data sparsity and cold start problems. With the increasing popularity of social media, these problems may be solved by using social-based recommendation. Social-based recommendation, as an emerging research area, uses social information to help mitigate the data sparsity and cold start problems, and it has been demonstrated that the social-based recommendation algorithms can efficiently improve the recommendation performance. However, few of the existing algorithms have considered using multiple types of relations within one social network. In this paper, we investigate the social-based recommendation algorithms on heterogeneous social networks and proposed Hete-CF, a Social Collaborative Filtering algorithm using heterogeneous relations. Distinct from the exiting methods, Hete-CF can effectively utilize multiple types of relations in a heterogeneous social network. In addition, Hete-CF is a general approach and can be used in arbitrary social networks, including event based social networks, location based social networks, and any other types of heterogeneous information networks associated with social information. The experimental results on two real-world data sets, DBLP (a typical heterogeneous information network) and Meetup (a typical event based social network) show the effectiveness and efficiency of our algorithm

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    An empirical evaluation of imbalanced data strategies from a practitioner's point of view

    Full text link
    This research tested the following well known strategies to deal with binary imbalanced data on 82 different real life data sets (sampled to imbalance rates of 5%, 3%, 1%, and 0.1%): class weight, SMOTE, Underbagging, and a baseline (just the base classifier). As base classifiers we used SVM with RBF kernel, random forests, and gradient boosting machines and we measured the quality of the resulting classifier using 6 different metrics (Area under the curve, Accuracy, F-measure, G-mean, Matthew's correlation coefficient and Balanced accuracy). The best strategy strongly depends on the metric used to measure the quality of the classifier. For AUC and accuracy class weight and the baseline perform better; for F-measure and MCC, SMOTE performs better; and for G-mean and balanced accuracy, underbagging
    • …
    corecore