3 research outputs found

    imaged-based tip force estimation on steerable intracardiac catheters using learning-based methods

    Get PDF
    Minimally invasive surgery has turned into the most commonly used approach to treat cardiovascular diseases during the surgical procedure; it is hypothesized that the absence of haptic (tactile) feedback and force presented to surgeons is a restricting factor. The use of ablation catheters with the integrated sensor at the tip results in high cost and noise complications. In this thesis, two sensor-less methods are proposed to estimate the force at the intracardiac catheter’s tip. Force estimation at the catheter tip is of great importance because insufficient force in ablation treatment may result in incomplete treatment and excessive force leads to damaging the heart chamber. Besides, adding the sensor to intracardiac catheters adds complexity to their structures. This thesis is categorized into two sensor-less approaches: 1- Learning-Based Force Estimation for Intracardiac Ablation Catheters, 2- A Deep-Learning Force Estimator System for Intracardiac Catheters. The first proposed method estimates catheter-tissue contact force by learning the deflected shape of the catheter tip section image. A regression model is developed based on predictor variables of tip curvature coefficients and knob actuation. The learning-based approach achieved force predictions in close agreement with experimental contact force measurements. The second approach proposes a deep learning method to estimate the contact forces directly from the catheter’s image tip. A convolutional neural network extracts the catheter’s deflection through input images and translates them into the corresponding forces. The ResNet graph was implemented as the architecture of the proposed model to perform a regression. The model can estimate catheter-tissue contact force based on the input images without utilizing any feature extraction or pre-processing. Thus, it can estimate the force value regardless of the tip displacement and deflection shape. The evaluation results show that the proposed method can elicit a robust model from the specified data set and approximate the force with appropriate accuracy

    Image-Based Force Estimation and Haptic Rendering For Robot-Assisted Cardiovascular Intervention

    Get PDF
    Clinical studies have indicated that the loss of haptic perception is the prime limitation of robot-assisted cardiovascular intervention technology, hindering its global adoption. It causes compromised situational awareness for the surgeon during the intervention and may lead to health risks for the patients. This doctoral research was aimed at developing technology for addressing the limitation of the robot-assisted intervention technology in the provision of haptic feedback. The literature review showed that sensor-free force estimation (haptic cue) on endovascular devices, intuitive surgeon interface design, and haptic rendering within the surgeon interface were the major knowledge gaps. For sensor-free force estimation, first, an image-based force estimation methods based on inverse finite-element methods (iFEM) was developed and validated. Next, to address the limitation of the iFEM method in real-time performance, an inverse Cosserat rod model (iCORD) with a computationally efficient solution for endovascular devices was developed and validated. Afterward, the iCORD was adopted for analytical tip force estimation on steerable catheters. The experimental studies confirmed the accuracy and real-time performance of the iCORD for sensor-free force estimation. Afterward, a wearable drift-free rotation measurement device (MiCarp) was developed to facilitate the design of an intuitive surgeon interface by decoupling the rotation measurement from the insertion measurement. The validation studies showed that MiCarp had a superior performance for spatial rotation measurement compared to other modalities. In the end, a novel haptic feedback system based on smart magnetoelastic elastomers was developed, analytically modeled, and experimentally validated. The proposed haptics-enabled surgeon module had an unbounded workspace for interventional tasks and provided an intuitive interface. Experimental validation, at component and system levels, confirmed the usability of the proposed methods for robot-assisted intervention systems
    corecore