9 research outputs found

    First Experimental Demonstration of Probabilistic Enumerative Sphere Shaping in Optical Fiber Communications

    Full text link
    We transmit probabilistic enumerative sphere shaped dual-polarization 64-QAM at 350Gbit/s/channel over 1610km SSMF using a short blocklength of 200. A reach increase of 15% over constant composition distribution matching with identical blocklength is demonstrated

    Exponentially-Weighted Energy Dispersion Index for the Nonlinear Interference Analysis of Finite-Blocklength Shaping

    Full text link
    A metric called exponentially-weighted energy dispersion index (EEDI) is proposed to explain the blocklength-dependent effective signal-to-noise ratio (SNR) in probabilistically shaped fiber-optic systems. EEDI is better than energy dispersion index (EDI) at capturing the dependency of the effective SNR on the blocklength for long-distance transmission

    Post-FEC BER Benchmarking for Bit-Interleaved Coded Modulation with Probabilistic Shaping

    Get PDF
    Accurate performance benchmarking after forward error correction (FEC) decoding is essential for system design in optical fiber communications. Generalized mutual information (GMI) has been shown to be successful at benchmarking the bit-error rate (BER) after FEC decoding (post-FEC BER) for systems with soft-decision (SD) FEC without probabilistic shaping (PS). However, GMI is not relevant to benchmark post-FEC BER for systems with SD-FEC and PS. For such systems, normalized GMI (NGMI), asymmetric information (ASI), and achievable FEC rate have been proposed instead. They are good at benchmarking post-FEC BER or to give an FEC limit in bit-interleaved coded modulation (BICM) with PS, but their relation has not been clearly explained so far. In this paper, we define generalized L-values under mismatched decoding, which are connected to the GMI and ASI. We then show that NGMI, ASI, and achievable FEC rate are theoretically equal under matched decoding but not under mismatched decoding. We also examine BER before FEC decoding (pre-FEC BER) and ASI over Gaussian and nonlinear fiber-optic channels with approximately matched decoding. ASI always shows better correlation with post-FEC BER than pre-FEC BER for BICM with PS. On the other hand, post-FEC BER can differ at a given ASI when we change the bit mapping, which describes how each bit in a codeword is assigned to a bit tributary.Comment: 14 pages, 8 figure

    Introducing enumerative sphere shaping for optical communication systems with short blocklengths

    No full text
    Probabilistic shaping based on constant composition distribution matching (CCDM) has received considerable attention as a way to increase the capacity of fiber optical communication systems. CCDM suffers from significant rate loss at short blocklengths and requires long blocklengths to achieve high shaping gain, which makes its implementation very challenging. In this paper, we propose to use enumerative sphere shaping (ESS) and investigate its performance for the nonlinear fiber optical channel. ESS has lower rate loss than CCDM at the same shaping rate, which makes it a suitable candidate to be implemented in real-time high-speed optical systems. In this paper, we first show that finite blocklength ESS and CCDM exhibit higher effective signal-to-noise ratio than their infinite blocklength counterparts. These results show that for the nonlinear fiber optical channel, large blocklengths should be avoided. We then show that for a 400 Gb/s dual-polarization 64-QAM WDM transmission system, ESS with short blocklengths outperforms both uniform signaling and CCDM. Gains in terms of both mutual information and bit-error rate are presented. ESS with a blocklength of 200 is shown to provide an extension reach of about 200 km in comparison with CCDM with the same blocklength. The obtained reach increase of ESS with a blocklength of 200 over uniform signaling is approximately 450 km (approximately 19%

    Introducing enumerative sphere shaping for optical communication systems with short blocklengths

    No full text
    Probabilistic shaping based on constant composition distribution matching (CCDM) has received considerable attention as a way to increase the capacity of fiber optical communication systems. CCDM suffers from significant rate loss at short blocklengths and requires long blocklengths to achieve high shaping gain, which makes its implementation very challenging. In this paper, we propose to use enumerative sphere shaping (ESS) and investigate its performance for the nonlinear fiber optical channel. ESS has lower rate loss than CCDM at the same shaping rate, which makes it a suitable candidate to be implemented in real-time high-speed optical systems. In this paper, we first show that finite blocklength ESS and CCDM exhibit higher effective signal-to-noise ratio than their infinite blocklength counterparts. These results show that for the nonlinear fiber optical channel, large blocklengths should be avoided. We then show that for a 400 Gb/s dual-polarization 64-QAM WDM transmission system, ESS with short blocklengths outperforms both uniform signaling and CCDM. Gains in terms of both bit-metric decoding rate and bit-error rate are presented. ESS with a blocklength of 200 is shown to provide an extension reach of about 200 km in comparison with CCDM with the same blocklength. The obtained reach increase of ESS with a blocklength of 200 over uniform signaling is approximately 450 km (approximately 19%)

    Introducing enumerative sphere shaping for optical communication systems with short blocklengths

    Get PDF
    Probabilistic shaping based on constant composition distribution matching (CCDM) has received considerable attention as a way to increase the capacity of fiber optical communication systems. CCDM suffers from significant rate loss at short blocklengths and requires long blocklengths to achieve high shaping gain, which makes its implementation very challenging. In this paper, we propose to use enumerative sphere shaping (ESS) and investigate its performance for the nonlinear fiber optical channel. ESS has lower rate loss than CCDM at the same shaping rate, which makes it a suitable candidate to be implemented in real-time high-speed optical systems. In this paper, we first show that finite blocklength ESS and CCDM exhibit higher effective signal-to-noise ratio than their infinite blocklength counterparts. These results show that for the nonlinear fiber optical channel, large blocklengths should be avoided. We then show that for a 400 Gb/s dual-polarization 64-QAM WDM transmission system, ESS with short blocklengths outperforms both uniform signaling and CCDM. Gains in terms of both mutual information and bit-error rate are presented. ESS with a blocklength of 200 is shown to provide an extension reach of about 200 km in comparison with CCDM with the same blocklength. The obtained reach increase of ESS with a blocklength of 200 over uniform signaling is approximately 450 km (approximately 19%

    Introducing enumerative sphere shaping for optical communication systems with short blocklengths

    No full text
    \u3cp\u3eProbabilistic shaping based on constant composition distribution matching (CCDM) has received considerable attention as a way to increase the capacity of fiber optical communication systems. CCDM suffers from significant rate loss at short blocklengths and requires long blocklengths to achieve high shaping gain, which makes its implementation very challenging. In this paper, we propose to use enumerative sphere shaping (ESS) and investigate its performance for the nonlinear fiber optical channel. ESS has lower rate loss than CCDM at the same shaping rate, which makes it a suitable candidate to be implemented in real-time high-speed optical systems. In this paper, we first show that finite blocklength ESS and CCDM exhibit higher effective signal-to-noise ratio than their infinite blocklength counterparts. These results show that for the nonlinear fiber optical channel, large blocklengths should be avoided. We then show that for a 400 Gb/s dual-polarization 64-QAM WDM transmission system, ESS with short blocklengths outperforms both uniform signaling and CCDM. Gains in terms of both bit-metric decoding rate and bit-error rate are presented. ESS with a blocklength of 200 is shown to provide an extension reach of about 200 km in comparison with CCDM with the same blocklength. The obtained reach increase of ESS with a blocklength of 200 over uniform signaling is approximately 450 km (approximately 19%).\u3c/p\u3
    corecore