972 research outputs found

    From Steiner Formulas for Cones to Concentration of Intrinsic Volumes

    Get PDF
    The intrinsic volumes of a convex cone are geometric functionals that return basic structural information about the cone. Recent research has demonstrated that conic intrinsic volumes are valuable for understanding the behavior of random convex optimization problems. This paper develops a systematic technique for studying conic intrinsic volumes using methods from probability. At the heart of this approach is a general Steiner formula for cones. This result converts questions about the intrinsic volumes into questions about the projection of a Gaussian random vector onto the cone, which can then be resolved using tools from Gaussian analysis. The approach leads to new identities and bounds for the intrinsic volumes of a cone, including a near-optimal concentration inequality.Comment: This version corrects errors in Propositions 3.3 and 3.4 and in Lemma 8.3 that appear in the published versio

    Gordon's inequality and condition numbers in conic optimization

    Full text link
    The probabilistic analysis of condition numbers has traditionally been approached from different angles; one is based on Smale's program in complexity theory and features integral geometry, while the other is motivated by geometric functional analysis and makes use of the theory of Gaussian processes. In this note we explore connections between the two approaches in the context of the biconic homogeneous feasiblity problem and the condition numbers motivated by conic optimization theory. Key tools in the analysis are Slepian's and Gordon's comparision inequalities for Gaussian processes, interpreted as monotonicity properties of moment functionals, and their interplay with ideas from conic integral geometry

    Effective Condition Number Bounds for Convex Regularization

    Get PDF
    We derive bounds relating Renegar's condition number to quantities that govern the statistical performance of convex regularization in settings that include the â„“1\ell_1-analysis setting. Using results from conic integral geometry, we show that the bounds can be made to depend only on a random projection, or restriction, of the analysis operator to a lower dimensional space, and can still be effective if these operators are ill-conditioned. As an application, we get new bounds for the undersampling phase transition of composite convex regularizers. Key tools in the analysis are Slepian's inequality and the kinematic formula from integral geometry.Comment: 17 pages, 4 figures . arXiv admin note: text overlap with arXiv:1408.301

    Intrinsic Volumes of Polyhedral Cones: A combinatorial perspective

    Get PDF
    The theory of intrinsic volumes of convex cones has recently found striking applications in areas such as convex optimization and compressive sensing. This article provides a self-contained account of the combinatorial theory of intrinsic volumes for polyhedral cones. Direct derivations of the General Steiner formula, the conic analogues of the Brianchon-Gram-Euler and the Gauss-Bonnet relations, and the Principal Kinematic Formula are given. In addition, a connection between the characteristic polynomial of a hyperplane arrangement and the intrinsic volumes of the regions of the arrangement, due to Klivans and Swartz, is generalized and some applications are presented.Comment: Survey, 23 page

    Extended Formulations in Mixed-integer Convex Programming

    Full text link
    We present a unifying framework for generating extended formulations for the polyhedral outer approximations used in algorithms for mixed-integer convex programming (MICP). Extended formulations lead to fewer iterations of outer approximation algorithms and generally faster solution times. First, we observe that all MICP instances from the MINLPLIB2 benchmark library are conic representable with standard symmetric and nonsymmetric cones. Conic reformulations are shown to be effective extended formulations themselves because they encode separability structure. For mixed-integer conic-representable problems, we provide the first outer approximation algorithm with finite-time convergence guarantees, opening a path for the use of conic solvers for continuous relaxations. We then connect the popular modeling framework of disciplined convex programming (DCP) to the existence of extended formulations independent of conic representability. We present evidence that our approach can yield significant gains in practice, with the solution of a number of open instances from the MINLPLIB2 benchmark library.Comment: To be presented at IPCO 201

    The achievable performance of convex demixing

    Get PDF
    Demixing is the problem of identifying multiple structured signals from a superimposed, undersampled, and noisy observation. This work analyzes a general framework, based on convex optimization, for solving demixing problems. When the constituent signals follow a generic incoherence model, this analysis leads to precise recovery guarantees. These results admit an attractive interpretation: each signal possesses an intrinsic degrees-of-freedom parameter, and demixing can succeed if and only if the dimension of the observation exceeds the total degrees of freedom present in the observation
    • …
    corecore