841 research outputs found
Crossover from thermal to quantum creep in layered antiferromagnetic superconductor
The influence of the antiferromagnetic order on the superconductor in the
mixed state results in creation of spin-flop domains along the cores of the
vortex lines. It is shown that this phenomenon makes possible crossover from
quantum creep regime to thermal one, and vice versa, at constant temperature.
To do this one needs to simply change the intensity or the direction of applied
magnetic field in the basal plane of layered structure.Comment: 9 pages, Latex(elsart.cls), 2 figures. to be published in Physica C
vol 340 nr 2/
Critical Fields and Anisotropy of NdO0.82F0.18FeAs Single Crystals
The newly discovered iron-based superconductors have stimulated enormous
interests in the field of superconductivity. Since the new superconductor is a
layered system, the anisotropy is a parameter with the first priority to know.
Meanwhile any relevant message about the critical fields (upper critical field
and irreversibility line) are essentially important. By using flux method, we
have successfully grown the single crystals NdO0.82F0.18FeAs at ambient
pressure. Resistive measurements reveal a surprising discovery that the
anisotropy \Gamma = (mc/mab)^{1/2} is below 5, which is much smaller than the
theoretically calculated results. The data measured up to 400 K show a
continuing curved feature which prevents a conjectured linear behavior for an
unconventional metal. The upper critical fields determined based on the
Werthamer-Helfand-Hohenberg formula are H_{c2}^{H||ab}(T=0 K) = 304 T and
H_{c2}^{H||c}(T=0 K)=62-70 T, indicating a very encouraging application of the
new superconductors.Comment: 12 pages, 4 figures, Submitted on 26 May, 200
Fulde-Ferrell-Larkin-Ovchinnikov State in Heavy Fermion Superconductors
The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is a novel superconducting
state in a strong magnetic field characterized by the formation of Cooper pairs
with nonzero total momentum (k \uparrow, -k+q \downarrow), instead of the
ordinary BCS pairs (k \uparrow, -k \downarrow). A fascinating aspect of the
FFLO state is that it exhibits inhomogeneous superconducting phases with a
spatially oscillating order parameter and spin polarization. The FFLO state has
been of interest in various research fields, not only in superconductors in
solid state physics, but also in neutral Fermion superfluid of ultracold atomic
gases and in color superconductivity in high energy physics. In spite of
extensive studies of various superconductors, there has been no undisputed
experimental verification of the FFLO state, mainly because of the very
stringent conditions required of the superconducting materials. Among several
classes of materials, certain heavy fermion and organic superconductors are
believed to provide conditions that are favorable to the formation of the FFLO
state. This review presents recent experimental and theoretical developments of
the FFLO state mainly in heavy fermion superconductors. In particular we
address the recently discovered quasi-two-dimensional superconductor CeCoIn_5,
which is a strong candidate for the formation of the FFLO state.Comment: 17 pages, 12 figures with jpsf2.cls, to be published in J. Phys. Soc.
Jpn. (Special Topics - Frontiers of Novel Superconductivity in Heavy Fermion
Compounds
Superconductivity in PbO-type Fe chalcogenides
PbO-type Fe chalcogenide has been drawing much attention as the Fe-based
superconductor with the most simple crystal structure. Whereas FeSe is an
intrinsic superconductor, FeTe, while having a structure analogous to FeSe,
exhibits antiferromagnetic ordering. The relationship between
antiferromagnetism and superconductivity provides key information to understand
better superconductivity in Fe chalcogenides. Furthermore the significant
pressure effect on Tc in the Fe-chalcogenide superconductors, which is likely
to be correlated with the crystal structure and/or magnetism, is important in
elucidating the mechanism of Fe-based superconductivity. Due to the simple
structure and composition, Fe-chalcogenide superconductor is one candidate for
applications to such areas as superconducting wires and thin films.Comment: A review article published in a special issue "100 years of
superconductivity" in Z. Kristallogr. [ 47 pages, 41 figurs
Thin Film Growth and Device Fabrication of Iron-Based Superconductors
Iron-based superconductors have received much attention as a new family of
high-temperature superconductors owing to their unique properties and distinct
differences from cuprates and conventional superconductors. This paper reviews
progress in thin film research on iron-based superconductors since their
discovery for each of five material systems with an emphasis on growth,
physical properties, device fabrication, and relevant bulk material properties.Comment: To appear in J. Phys. Soc. Jp
New Fe-based superconductors: properties relevant for applications
Less than two years after the discovery of high temperature superconductivity
in oxypnictide LaFeAs(O,F) several families of superconductors based on Fe
layers (1111, 122, 11, 111) are available. They share several characteristics
with cuprate superconductors that compromise easy applications, such as the
layered structure, the small coherence length, and unconventional pairing, On
the other hand the Fe-based superconductors have metallic parent compounds, and
their electronic anisotropy is generally smaller and does not strongly depend
on the level of doping, the supposed order parameter symmetry is s wave, thus
in principle not so detrimental to current transmission across grain
boundaries. From the application point of view, the main efforts are still
devoted to investigate the superconducting properties, to distinguish intrinsic
from extrinsic behaviours and to compare the different families in order to
identify which one is the fittest for the quest for better and more practical
superconductors. The 1111 family shows the highest Tc, huge but also the most
anisotropic upper critical field and in-field, fan-shaped resistive transitions
reminiscent of those of cuprates, while the 122 family is much less anisotropic
with sharper resistive transitions as in low temperature superconductors, but
with about half the Tc of the 1111 compounds. An overview of the main
superconducting properties relevant to applications will be presented. Upper
critical field, electronic anisotropy parameter, intragranular and
intergranular critical current density will be discussed and compared, where
possible, across the Fe-based superconductor families
Review on Superconducting Materials
Short review of the topical comprehension of the superconductor materials
classes Cuprate High-Temperature Superconductors, other oxide superconductors,
Iron-based Superconductors, Heavy-Fermion Superconductors, Nitride
Superconductors, Organic and other Carbon-based Superconductors and Boride and
Borocarbide Superconductors, featuring their present theoretical understanding
and their aspects with respect to technical applications.Comment: A previous version of this article has been published in \" Applied
Superconductivity: Handbook on Devices and Applications \", Wiley-VCH ISBN:
978-3-527-41209-9. The new extended and updated version will be published in
\" Encyclopedia of Applied Physics \", Wiley-VC
Multifrekvenciás elektron spin rezonancia erősen korrelált fémekben és szupravezetőkben = Multifrequency electron spin resonance in strongly correlated metals and superconductors
A projekt célja olyan szilárd testek elektron spin rezonancia vizsgálata, amelyekben az elektron-elektron korrelációk alapvetően fontosak. A vizsgált kuprát, szerves és fullerén vegyületek fémek, szupravezetők vagy a szupravezetéshez közel álló mágnesesen rendezett anyagok, amelyekben az elektron korrelációnak lényeges szerepe van. Megmértük és egy elméletet dolgoztunk ki a MgB2 szervetlen szupravezető vezetési elektron spin élettartamára, ami alapvető fizikai mennyiség. Befejeztük egy, a magas hőmérsékletű szupravezetéshez közel álló kuprát rendszer mágneses fázis diagramjának meghatározását. Az ET2Cu[N(CN)2]Cl réteges szerves gyenge ferromágnes rezonancia módusainak feltérképezésével egy régóta megfejthetetlen problémát oldottunk meg egy, a szupravezetés és mágnesség határán lévő anyagra. A Parmai Egyetem (Olaszország) és a Cambridge-i Egyetem (Nagy Britannia) kutatóival együttműködve megmutattuk, hogy a Li4C60 fullerén vegyület egy ionos vezető, amely alkalmazható lehet elektromos telepekben. Az eredményeket magas impaktú tudományos folyóiratokban közöltük. A munka két PhD tézis alapjául szolgált. Az ESR spektrumok fejlődése megújította az érdeklődést a módszer iránt. A nagy frekvenciás ESR spektrométert felújítottuk, új kvázi-optikai hidat, nagyteljesítméníű mm-hullámú forrást, mérőfejeket és egy rezgésmentes tartószerkezetet helyeztünk üzembe. Az érzékenységet egy nagyságrenddel megnöveltük. | The aim of the project was an electron spin resonance investigation of solids in which electron-electron correlations are of fundamental importance. The cuprate, organic and fullerene compounds investigated are metals, superconductors or magnetically ordered systems related to superconductivity in which electron correlations play an essential role. We measured and proposed a theory of the conduction electron spin life time in an inorganic superconductor, MgB2. We completed work on the magnetic phase diagram of a cuprate system close to high temperature superconductivity. The mapping of the magnetic resonance modes of a layered organic weak ferromagnet, ET2Cu(N(CN)2)Cl, solved a long standing problem of a material at the borderline of magnetic order and superconductivity. We showed, in collaboration with researchers at the University of Parma (Italy) and University of Cambridge (UK) that the fullerene compound, Li4C60 is a crystalline superionic conductor with possible applications in electrical batteries. Results were published in high impact scientific journals. The work served the basis for the completion of two PhD thesis. The recent progress of high frequencies ESR spectrometers has renewed interest in the method. The high frequency ESR spectrometer has been reconstructed, a new quasi optical bridge, a powerful mm-wave source, probe heads and a vibration free supporting structure were installed. As a result the sensitivity was increased by an order of magnitude
- …
