7,943 research outputs found

    Intravascular ultrasound: a technique in evolution: methodological considerations

    Get PDF
    As the title of the thesis suggests, intravascular ultrasound has been, and continues to be, an imaging technique that is in active evolution. Image quality has improved dramatically from the crude, low resolution 'black and white' images of the first generation of intravascular ultrasound scanners and transducers are now small enough to image most arteries before intervention. Although intravascular ultrasound is increasingly seen as the most informative method of assessing the coronary arteries, there are outstanding problems that must be addressed and overcome before its full potential can be achieved.The aim of this thesis is to examine a number of these methodological shortcomings of intravascular ultrasound so that appropriate solutions can be found.After a general overview, provided in Chapter 1, the reproducibility of intravascular ultrasound quantitation is assessed in Chapter 2. For reasons elaborated above, ultrasound is seen as the best technique to study the acute and long term outcome of coronary interventions and the effect of plaque modifying agents. Without detailed data concerning its reproducibility, such studies are uninterpretable.Chapter 3 deals with the impact of catheter malfunction on the geometric integrity of intravascular ultrasound images. At present, the mechanical ultrasound devices are the most widely used systems. All mechanical systems are potentially subject to the problem of non -uniform rotation of the transducer, and to date its impact has been poorly characterised.The difficulty encountered in discriminating unstable coronary lesions is examined in Chapter 4. There is a widely held view that acute coronary lesions cannot be discriminated using intravascular ultrasound. Specific echographic markers are described that are found in the majority of unstable lesions. Close scrutiny of grey scale images allows identification of acute lesions and may allow discrimination of thrombus from underlying atheromatous plaque.In the last two chapters, methodological issues relating to the clinical application of intravascular ultrasound in guiding coronary stenting are explored. In chapter 5, the findings of an observational study confirm the potential of intravascular ultrasound to provide additional information in cases in which favourable angiographic appearances have been achieved. However, the choice of one particular 'expansion index' over another is seen to impact significantly on the proportion of lesions that are judged to be successful. Before ultrasound guidance based on the attainment of specific quantitative expansion criteria be advocated as a widely applied technique, the reproducibility of reference segment measurements must be known. This issue is studied in chapter 6.Separate studies are described in each of the data chapters. A similar layout is employed in each, consisting of the study aims, methods, findings, discussion and conclusion. At the risk of introducing a degree of repetition in the methods sections of each chapter, the ultrasound examination and image interpretation protocol are elaborated in each case, as important differences exist between the studies

    Image-based Quantification of 3D Morphology for Bifurcations in the Left Coronary Artery: Application to Stent Design

    Get PDF
    Background Improved strategies for stent‐based treatment of coronary artery disease at bifurcations require a greater understanding of artery morphology. Objective We developed a workflow to quantify morphology in the left main coronary (LMCA), left anterior descending (LAD), and left circumflex (LCX) artery bifurcations. Methods Computational models of each bifurcation were created for 55 patients using computed tomography images in 3D segmentation software. Metrics including cross‐sectional area, length, eccentricity, taper, curvature, planarity, branching law parameters, and bifurcation angles were assessed using open‐sources software and custom applications. Geometric characterization was performed by comparison of means, correlation, and linear discriminant analysis (LDA). Results Differences between metrics suggest dedicated or multistent approaches should be tailored for each bifurcation. For example, the side branch of the LCX (i.e., obtuse marginal; OM) was longer than that of the LMCA (i.e., LCXprox) and LAD (i.e., first diagonal; D1). Bifurcation metrics for some locations (e.g., LMCA Finet ratio) provide results and confidence intervals agreeing with prior findings, while revised metric values are presented for others (e.g., LAD and LCX). LDA revealed several metrics that differentiate between artery locations (e.g., LMCA vs. D1, LMCA vs. OM, LADprox vs. D1, and LCXprox vs. D1). Conclusions These results provide a foundation for elucidating common parameters from healthy coronary arteries and could be leveraged in the future for treating diseased arteries. Collectively the current results may ultimately be used for design iterations that improve outcomes following implantation of future dedicated bifurcation stents

    Coronary computed tomography angiography of spontaneous coronary artery dissection: A case report and review of the literature

    Get PDF
    Patient: Male, 23 Final Diagnosis: Spontaneous coronary artery dissection Symptoms: Chest discomfort ‱ chest pain Medication: — Clinical Procedure: Coronary computed tomography angiography Specialty: Radiology OBJECTIVE: Rare disease BACKGROUND: Multidetector computed tomography (MDCT) has gained wide acceptance in the evaluation of the cardiovascular system. Of particular clinical interest is its ability to non-invasively evaluate coronary arteries in patients presenting to the emergency room. In acute coronary syndromes, myocardial ischemia is most often caused by atherosclerosis. We present a case of a rare cause of acute coronary syndrome, spontaneous coronary artery dissection (SCAD), which was initially evaluated with MDCT and followed by intravascular ultrasound (IVUS) and invasive coronary angiography (ICA). We discuss the findings and role of each modality with particular attention to coronary computed tomographic angiography (CCTA) in the diagnosis and management of SCAD. As the use of CCTA in the emergency department continues to rise, radiologists must become familiar with CT appearance of SCAD. CASE REPORT: We report the multidetector computed tomography (MDCT), intravascular ultrasound (IVUS), and invasive coronary angiography (ICA) findings in a case of spontaneous coronary artery dissection of the left anterior descending artery in a previously healthy 23-year-old man. The role of coronary computed tomographic angiography (CCTA) in diagnosis and management of this potentially life-threatening condition is discussed. CONCLUSIONS: In the clinical setting of acute coronary syndrome, SCAD must be a consideration, particularly in young patients without clear risk factors for coronary artery disease and in women in the peripartum period. CCTA is a very helpful diagnostic tool to diagnose the condition in a non-invasive manner and to follow up after treatment

    CEUS LI-RADS: a pictorial review

    Get PDF
    Contrast-enhanced ultrasound (CEUS) greatly improved the diagnostic accuracy of US in the detection and characterization of focal liver lesions (FLLs), and it is suggested and often included in many international guidelines as an important diagnostic tool in the imaging work-up of cirrhotic patients at risk for developing hepatocellular carcinoma (HCC). In particular, CEUS Liver Imaging Reporting and Data System (LI-RADS) provides standardized terminology, interpretation, and reporting for the diagnosis of HCC. The aim of this pictorial essay is to illustrate CEUS features of nodules discovered at US in cirrhotic liver according to LI-RADS categorization

    Critical Care Ultrasonography and Its Application for COVID-19

    Get PDF
    Ultrasound has developed as an invaluable tool in diagnosis and proper management in the intensive care unit (ICU). Application of critical care ultrasonography is quite distinct from the routine comprehensive diagnostic ultrasound exam, because the urgent setting mandates a goal-directed approach. Performing accurate and efficient critical care ultrasound requires ultrasound providers to first understand the pathophysiology of the disease and related imaging findings, and then follow the protocols to perform a focused ultrasound exam. In the ongoing coronavirus disease 2019 (COVID-19) pandemic, ultrasound plays an essential role in diagnosing and monitoring critically ill COVID-19 patients in the ICU. Our review focuses on the basics and clinical application of critical care ultrasound in diagnosing common lung disease, COVID-19 pulmonary lesions, pediatric COVID-19, and cardiovascular dysfunction as well as its role in ECMO and interventional ultrasonography

    ECG-Gated Three-dimensional Intravascular Ultrasound

    Get PDF
    Background Automated systems for the quantitative analysis of three-dimensional (3D) sets of intravascular ultrasound (IVUS) images have been developed to reduce the time required to perform volumetric analyses; however, 3D image reconstruction by these nongated systems is frequently hampered by cyclic artifacts. Methods and Results We used an ECG-gated 3D IVUS image acquisition workstation and a dedicated pullback device in atherosclerotic coronary segments of 30 patients to evaluate (1) the feasibility of this approach of image acquisition, (2) the reproducibility of an automated contour detection algorithm in measuring lumen, external elastic membrane, and plaque+media cross-sectional areas (CSAs) and volumes and the cross-sectional and volumetric plaque+media burden, and (3) the agreement between the automated area measurements and the results of manual tracing. The gated image acquisition took 3.9±1.5 minutes. The length of the segments analyzed was 9.6 to 40.0 mm, with 2.3±1.5 side branches per segment. The minimum lumen CSA measured 6.4±1.7 mm2, and the maximum and average CSA plaque+media burden measured 60.5±10.2% and 46.5±9.9%, respectively. The automated contour-detection required 34.3±7.3 minutes per segment. The differences between these measurements and manual tracing did not exceed 1.6% (SD<6.8%). Intraobserver and interobserver differences in area measurements (n=3421; r=.97 to.99) were <1.6% (SD<7.2%); intraobserver and interobserver differences in volumetric measurements (n=30; r=.99) were <0.4% (SD<3.2%). Conclusions ECG-gated acquisition of 3D IVUS image sets is feasible and permits the application of automated contour detection to provide reproducible measurements of the lumen and atherosclerotic plaque CSA and volume in a relatively short analysis time

    Discrimination of intravascular lumen and dissections in single intravascular ultrasound images using subtraction, conventional averaging and saline flush

    Get PDF
    With current 30-MHz intravascular ultrasound systems, flowing blood may cause considerable backscatter which in real-time images is characterized by dynamic speckle. However, in a single intravascular ultrasound image (still-frame) the discrimination between arterial lumen and wall may be difficult due to the frozen intraluminal speckle, particularly in the presence of dissections. We compared subtraction, averaging and saline flush as methods to improve the discrimination between arterial lumen and wall in a single image. The real-time images served as gold standard. In 22 patients who underwent peripheral balloon angioplasty, ultrasound images obtained from 84 sites were examined. The sensitivity and specificity of detecting dissections were in the subtraction image 85% and 100%, in the averaged image 57% and 96%, and in the saline flush image 58% and 86%, respectively. Subtraction is a promising method to outline the irregular lumen in a single image

    Spatial orientation of cross-sectional images of coronary arteries: point of view in intracoronary imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In studies where cross-sectional images of coronary arteries obtained with different imaging modalities are compared, the importance of correct co-localization and matching of images along the coronary artery longitudinal axis is obvious. However, it appears neglected that correct spatial orientation of the cross-sectional plane may not be obtainable just by rotating the images to ensure co-localization of identifiable landmarks such as sidebranches. A cross-section has two sides, one facing proximally and the other distally, and pairs of images reconstructed corresponding to these opposite points of view are mirror images of each other and not superimposable. This may be difficult if not impossible to recognize and unrecognized it will give rise to flawed results in the development and validation of imaging technologies aimed at plaque characterization (tissue mapping). We determined the imagined point of view for three commercially available intracoronary imaging systems used by invasive cardiologists and illustrate its importance in imaging modality validation.</p> <p>Methods and Results</p> <p>We made an asymmetric phantom and investigated it with two different intravascular ultrasound (IVUS) systems and one optical coherence tomography (OCT) system. The asymmetry of the phantom allowed determination of the spatial orientation of the cross-sectional images. On all tested systems, an observer should imagine herself/himself standing proximal to the cross-section when looking at the intravascular images.</p> <p>Conclusions</p> <p>The tested intracoronary imaging modalities displayed cross-sectional images with a spatial orientation corresponding to a proximal point of view. Knowledge of the spatial orientation is mandatory when comparing and validating different imaging modalities aimed at plaque characterization.</p
    • 

    corecore