10,592 research outputs found
Task-dependent Modulation of Cortical Excitability and Balance Control in Individuals with Post-concussion Syndrome
In most cases, symptoms resolve between 7-10 days post-concussion. However, in 10-15% of the concussed population, symptoms can remain unresolved for months to years following the head injury. The purpose of this thesis was two-fold, and was broken up into two studies, where the same individuals participated in both studies. The purpose of the first study was to quantify the differences in balance control between individuals with PCS (i.e., had been experiencing symptoms for \u3c30 days) and non-concussed individuals during a lower-limb reaching task. Participants completed a static balance assessment before and after a lower-limb reaching task, which incorporated a Go/No-Go paradigm. Results from this study revealed no differences in the static stability assessments, however, individuals with PCS demonstrated increased medial-lateral COP displacement as well as greater trunk pitch during the reaching task. Overall, the findings reveal persistent balance impairments in individuals with PCS, which may put this population at an increased risk of further injury. The purpose of the second study was to assess task-dependent modulation of cortical excitability prior to planned index finger abduction contractions comparing a non-concussed population to a population with PCS. The protocol in this study consisted of both single and paired-pulse transcranial magnetic stimulation (TMS) which was applied prior to the beginning of 3 different tasks (i.e., a rest condition with no plan to contract, a precision contraction, and a powerful contraction). In addition to the three tasks, participants also had to respond to a Go/No-Go cue. The results of this study revealed an increase in excitability prior to a precision contraction in both non-concussed and PCS groups. No differences in task-dependent modulation were found between the two groups with respect to intracortical facilitation and inhibition, however a negative correlation between number of symptoms reported (SCAT3 symptom evaluation) and intracortical facilitation was revealed. The increase in corticospinal excitability prior to a precision contraction was not explained by the two cortical mechanisms we assessed and may therefore be due to spinal modulation or a different cortical mechanism. Overall, based on the results from this thesis, it appears that individuals with PCS have balance impairments, which may be a result of an inability to maximally activate their postural muscles. Furthermore, it appears that those individuals who reported a higher number of symptoms had greater reductions in intracortical facilitation, likely reflecting the heterogeneity of this clinical group
Gain modulation of synaptic inputs by network state in auditory cortex in vivo
The cortical network recurrent circuitry generates spontaneous activity organized into Up (active) and Down (quiescent) states during slow-wave sleep or anesthesia. These different states of cortical activation gain modulate synaptic transmission. However, the reported modulation that Up states impose on synaptic inputs is disparate in the literature, including both increases and decreases of responsiveness. Here, we tested the hypothesis that such disparate observations may depend on the intensity of the stimulation. By means of intracellular recordings, we studied synaptic transmission during Up and Down states in rat auditory cortex in vivo. Synaptic potentials were evoked either by auditory or electrical (thalamocortical, intracortical) stimulation while randomly varying the intensity of the stimulus. Synaptic potentials evoked by the same stimulus intensity were compared in Up/Down states. Up states had a scaling effect on the stimulus-evoked synaptic responses: the amplitude of weaker responses was potentiated whereas that of larger responses was maintained or decreased with respect to the amplitude during Down states. We used a computational model to explore the potential mechanisms explaining this nontrivial stimulus–response relationship. During Up/Down states, there is different excitability in the network and the neuronal conductance varies. We demonstrate that the competition between presynaptic recruitment and the changing conductance might be the central mechanism explaining the experimentally observed stimulus–response relationships. We conclude that the effect that cortical network activation has on synaptic transmission is not constant but contingent on the strength of the stimulation, with a larger modulation for stimuli involving both thalamic and cortical networks.Fil: Reig, Ramon. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Zerlaut, Yann. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; FranciaFil: Vergara, Ramiro Oscar. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Acústica y Percepción Sonora; ArgentinaFil: Destexhe, Alain. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; FranciaFil: Sánchez Vives, María V.. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Institució Catalana de Recerca i Estudis Avancats; Españ
Cerebellum to motor cortex paired associative stimulation induces bidirectional STDP-like plasticity in human motor cortex
The cerebellum is crucially important for motor control and adaptation. Recent non-invasive brain stimulation studies have indicated the possibility to alter the excitability of the cerebellum and its projections to the contralateral motor cortex, with behavioral consequences on motor control and adaptation. Here we sought to induce bidirectional spike-timing dependent plasticity (STDP)-like modifications of motor cortex (M1) excitability by application of paired associative stimulation (PAS) in healthy subjects. Conditioning stimulation over the right lateral cerebellum (CB) preceded focal transcranial magnetic stimulation (TMS) of the left M1 hand area at an interstimulus interval of 2 ms (CB→M1 PAS(2 ms)), 6 ms (CB→M1 PAS(6 ms)) or 10 ms (CB→M1 PAS(10 ms)) or randomly alternating intervals of 2 and 10 ms (CB→M1 PAS(Control)). Effects of PAS on M1 excitability were assessed by the motor-evoked potential (MEP) amplitude, short-interval intracortical inhibition (SICI), intracortical facilitation (ICF) and cerebellar-motor cortex inhibition (CBI) in the first dorsal interosseous muscle of the right hand. CB→M1 PAS(2 ms) resulted in MEP potentiation, CB→M1 PAS(6 ms) and CB→M1 PAS(10 ms) in MEP depression, and CB→M1 PAS(Control) in no change. The MEP changes lasted for 30-60 min after PAS. SICI and CBI decreased non-specifically after all PAS protocols, while ICF remained unaltered. The physiological mechanisms underlying these MEP changes are carefully discussed. Findings support the notion of bidirectional STDP-like plasticity in M1 mediated by associative stimulation of the cerebello-dentato-thalamo-cortical pathway and M1. Future studies may investigate the behavioral significance of this plasticity
An Electrocorticographic Brain Interface in an Individual with Tetraplegia
Brain-computer interface (BCI) technology aims to help individuals with disability to control assistive devices and reanimate paralyzed limbs. Our study investigated the feasibility of an electrocorticography (ECoG)-based BCI system in an individual with tetraplegia caused by C4 level spinal cord injury. ECoG signals were recorded with a high-density 32-electrode grid over the hand and arm area of the left sensorimotor cortex. The participant was able to voluntarily activate his sensorimotor cortex using attempted movements, with distinct cortical activity patterns for different segments of the upper limb. Using only brain activity, the participant achieved robust control of 3D cursor movement. The ECoG grid was explanted 28 days post-implantation with no adverse effect. This study demonstrates that ECoG signals recorded from the sensorimotor cortex can be used for real-time device control in paralyzed individuals
Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation.
After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra- and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required-a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural interfacing, and neurorehabilitation, all with the goal of better understanding neurological injury and how to improve recovery
Monitoring cortical excitability during repetitive transcranial magnetic stimulation in children with ADHD: a single-blind, sham-controlled TMS-EEG study
Background: Repetitive transcranial magnetic stimulation (rTMS) allows non-invasive stimulation of the human brain. However, no suitable marker has yet been established to monitor the immediate rTMS effects on cortical areas in children.
Objective: TMS-evoked EEG potentials (TEPs) could present a well-suited marker for real-time monitoring. Monitoring is particularly important in children where only few data about rTMS effects and safety are currently available.
Methods: In a single-blind sham-controlled study, twenty-five school-aged children with ADHD received subthreshold 1 Hz-rTMS to the primary motor cortex. The TMS-evoked N100 was measured by 64-channel-EEG pre, during and post rTMS, and compared to sham stimulation as an intraindividual control condition.
Results: TMS-evoked N100 amplitude decreased during 1 Hz-rTMS and, at the group level, reached a stable plateau after approximately 500 pulses. N100 amplitude to supra-threshold single pulses post rTMS confirmed the amplitude reduction in comparison to the pre-rTMS level while sham stimulation had no influence. EEG source analysis indicated that the TMS-evoked N100 change reflected rTMS effects in the stimulated motor cortex. Amplitude changes in TMS-evoked N100 and MEPs (pre versus post 1 Hz-rTMS) correlated significantly, but this correlation was also found for pre versus post sham stimulation.
Conclusion: The TMS-evoked N100 represents a promising candidate marker to monitor rTMS effects on cortical excitability in children with ADHD. TMS-evoked N100 can be employed to monitor real-time effects of TMS for subthreshold intensities. Though TMS-evoked N100 was a more sensitive parameter for rTMS-specific changes than MEPs in our sample, further studies are necessary to demonstrate whether clinical rTMS effects can be predicted from rTMS-induced changes in TMS-evoked N100 amplitude and to clarify the relationship between rTMS-induced changes in TMS-evoked N100 and MEP amplitudes. The TMS-evoked N100 amplitude reduction after 1 Hz-rTMS could either reflect a globally decreased cortical response to the TMS pulse or a specific decrease in inhibition
Towards a Unified Theory of Neocortex: Laminar Cortical Circuits for Vision and Cognition
A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of pre-attentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624
Variability in non-invasive brain stimulation studies: reasons and results
Non-invasive brain stimulation techniques (NIBS), such as Theta Burst Stimulation (TBS), Paired Associative Stimulation (PAS) and transcranial Direct Current Stimulation (tDCS), are widely used to probe plasticity in the human motor cortex (M1). Although TBS, PAS and tDCS differ in terms of physiological mechanisms responsible for experimentally-induced cortical plasticity, they all share the ability to elicit long-term potentiation (LTP) and depression (LTD) in M1. However, NIBS techniques are all affected by relevant variability in intra- and inter-subject responses. A growing number of factors contributing to NIBS variability have been recently identified and reported. In this review, we have readdressed the issue of variability in human NIBS studies. We have first briefly discussed the physiological mechanisms responsible for TBS, PAS and tDCS-induced cortical plasticity. Then, we have provided statistical measures of intra- and inter-subject variability, as calculated in previous studies. Finally, we have reported in detail known sources of variability by categorizing them into physiological, technical and statistical factors. Improving knowledge about sources of variability could lead to relevant advances in designing new tailored NIBS protocols in physiological and pathological conditions
Electrophysiological studies in healthy subjects involving caffeine
Copyright ©2012 IOS Press All rights reserved.We review the electrophysiological studies concerning the effects of caffeine on muscle, lower and upper motor neuron excitability and cognition. Several different methods have been used, such as electromyography, recruitment analysis, H-reflex, transcranial magnetic stimulation (TMS), electroencephalography and event-related potentials. The positive effect of caffeine on vigilance, attention, speed of reaction, information processing and arousal is supported by a number of electrophysiological studies. The evidence in favor of an increased muscle fiber resistance is not definitive, but higher or lower motor neuron excitability can occur as a consequence of a greater excitation of the descending input from the brainstem and upper motor neurons. TMS can address the influence of caffeine on the upper motor neuron. Previous studies showed that cortico-motor threshold and intracortical excitatory and inhibitory pathways are not influenced by caffeine. Nonetheless, our results indicate that cortical silent period (CSP) is reduced in resting muscles after caffeine consumption, when stimulating the motor cortex with intensities slightly above threshold. We present new data demonstrating that this effect is also observed in fatigued muscle. We conclude that CSP can be considered a surrogate marker of the effect of caffeine in the brain, in particular of its central ergogenic effect
Consciousness CLEARS the Mind
A full understanding of consciouness requires that we identify the brain processes from which conscious experiences emerge. What are these processes, and what is their utility in supporting successful adaptive behaviors? Adaptive Resonance Theory (ART) predicted a functional link between processes of Consciousness, Learning, Expectation, Attention, Resonance, and Synchrony (CLEARS), includes the prediction that "all conscious states are resonant states." This connection clarifies how brain dynamics enable a behaving individual to autonomously adapt in real time to a rapidly changing world. The present article reviews theoretical considerations that predicted these functional links, how they work, and some of the rapidly growing body of behavioral and brain data that have provided support for these predictions. The article also summarizes ART models that predict functional roles for identified cells in laminar thalamocortical circuits, including the six layered neocortical circuits and their interactions with specific primary and higher-order specific thalamic nuclei and nonspecific nuclei. These prediction include explanations of how slow perceptual learning can occur more frequently in superficial cortical layers. ART traces these properties to the existence of intracortical feedback loops, and to reset mechanisms whereby thalamocortical mismatches use circuits such as the one from specific thalamic nuclei to nonspecific thalamic nuclei and then to layer 4 of neocortical areas via layers 1-to-5-to-6-to-4.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624
- …
