451,059 research outputs found

    In Vitro Stability of Phytase from Recombinant Bacteria E. Coli BL21 (DE3) EAS1-AMP

    Get PDF
    The objective of the research was to inquire the Km, Vm, activity, intracellular phytase stability exposed to pH variation, temperature variation and protease (pepsin and pancreas) in vitro. The phytase was produced from recombinant bacteria E. coli BL21(DE3) EAS1-AMP using 1.5 mM IPTG as inducer. Intracellular enzyme was extracted via freeze shock and centrifugation. Pure enzyme was acquired through NI-NTA agarose column. The enzyme was then tested for Km, Vm, phytase activity and stability against pH, temperature and protease. Treatment levels for stability against protease were P0: without protease, P1: addition of pepsin, P2: addition of pepsin and pancreas, and the data were statistically analyzed using analysis of variance of one-way Completely Randomized Design. Crude intracellular phytase had Vm 6.39 υM/sec, Km 34.82 υM, and 277 units activity. Intracellular phytas was stable at pH 4–6 and 0–550 C. Protease level influenced the activity of intracellular phytase (P<0.05). Intracellular phytase was stable against pepsin but not pancreas. Keywords: Km, Vm, activity, intracellular phytase, pH, temperature, protease

    β-Catenin is a pH sensor with decreased stability at higher intracellular pH.

    Get PDF
    β-Catenin functions as an adherens junction protein for cell-cell adhesion and as a signaling protein. β-catenin function is dependent on its stability, which is regulated by protein-protein interactions that stabilize β-catenin or target it for proteasome-mediated degradation. In this study, we show that β-catenin stability is regulated by intracellular pH (pHi) dynamics, with decreased stability at higher pHi in both mammalian cells and Drosophila melanogaster β-Catenin degradation requires phosphorylation of N-terminal residues for recognition by the E3 ligase β-TrCP. While β-catenin phosphorylation was pH independent, higher pHi induced increased β-TrCP binding and decreased β-catenin stability. An evolutionarily conserved histidine in β-catenin (found in the β-TrCP DSGIHS destruction motif) is required for pH-dependent binding to β-TrCP. Expressing a cancer-associated H36R-β-catenin mutant in the Drosophila eye was sufficient to induce Wnt signaling and produced pronounced tumors not seen with other oncogenic β-catenin alleles. We identify pHi dynamics as a previously unrecognized regulator of β-catenin stability, functioning in coincidence with phosphorylation

    Acid-Labile Traceless Click Linker for Protein Transduction

    Get PDF
    Intracellular delivery of active proteins presents an interesting approach in research and therapy. We created a protein transduction shuttle based on a new traceless click linker that combines the advantages of click reactions with implementation of reversible pH-sensitive bonds. The azidomethyl-methylmaleic anhydride (AzMMMan) linker was found compatible with different click chemistries, demonstrated in bioreversible protein modification with dyes, polyethylene glycol, or a transduction carrier. Linkages were stable at physiological pH but reversible at the mild acidic pH of endosomes or lysosomes. We show that pH-reversible attachment of a defined endosome-destabilizing three-arm oligo(ethane amino)amide carrier generates an effective shuttle for protein delivery. The cargo protein nlsEGFP, when coupled via the traceless AzMMMan linker, experiences efficient cellular uptake and endosomal escape into the cytosol, followed by import into the nucleus. In contrast, irreversible linkage to the same shuttle hampers nuclear delivery of nlsEGFP which after uptake remains trapped in the cytosol. Successful intracellular delivery of bioactive ß-galactosidase as a model enzyme was also demonstrated using the pH-controlled shuttle system

    Symposium on Intracellular pH, PCO₂ and PO₂: Introductory Remarks

    Get PDF
    It is a pleasure to welcome the three authorities who will carry the major load of presentations in our symposium today. They are Dr. Frans Jöbsis of Duke University School of Medicine, Dr. Eugene Robin of The University of Pittsburgh School of Medicine, and Dr. Norman Carter of The University of Texas Southwestern Medical School. We are also grateful for the presence of Dr. Lutz Kiesow of the Naval Medical Research Institute, Bethesda, Maryland. Dr. Kiesow will assist in the discussions to be held after each major presentation. Each of these men is an international authority in his field, and we are more than fortunate to have this group with us today

    Modulation of a sustained calcium current by intracellular pH in horizontal cells of fish retina.

    Get PDF
    A sustained high voltage-activated (HVA), nifedipine- and cadmium-sensitive calcium current and a sustained calcium action potential (AP) were recorded from horizontal cells isolated from catfish retina. pH indicator dyes showed that superfusion with NH4Cl alkalinized these cells and that washout of NH4Cl or superfusion with Na-acetate acidified them. HVA current was slightly enhanced during superfusion of NH4Cl but was suppressed upon NH4Cl washout or application of Na-acetate. When 25 mM HEPES was added to the patch pipette to increase intracellular pH buffering, the effects of NH4Cl and Na-acetate on HVA current were reduced. These results indicated that intracellular acidification reduces HVA calcium current and alkalinization increases it. Sustained APs, recorded with high resistance, small diameter microelectrodes, were blocked by cobalt and cadmium and their magnitude varied with extracellular calcium concentration. These results provide confirmatory evidence that the HVA current is a major component of the AP and indicate that the AP can be used as a measure of how the HVA current can be modified in intact, undialyzed cells. The duration of APs was increased by superfusion with NH4Cl and reduced by washout of NH4Cl or superfusion with Na-acetate. The Na-acetate and NH4Cl washout-dependent shortening of the APs was observed in the presence of intracellular BAPTA, a calcium chelator, IBMX, a phosphodiesterase inhibitor, and in Na-free or TEA-enriched saline. These findings provide supportive evidence that intracellular acidification may directly suppress the HVA calcium current in intact cells. Intracellular pH changes would thereby be expected to modulate not only the resting membrane potential of these cells in darkness, but calcium-dependent release of neurotransmitter from these cells as well. Furthermore, this acidification-dependent suppression of calcium current could serve a protective role by reducing calcium entry during retinal ischemia, which is usually thought to be accompanied by intracellular acidosis

    A mouse model of autism implicates endosome pH in the regulation of presynaptic calcium entry.

    Get PDF
    Psychoactive compounds such as chloroquine and amphetamine act by dissipating the pH gradient across intracellular membranes, but the physiological mechanisms that normally regulate organelle pH remain poorly understood. Interestingly, recent human genetic studies have implicated the endosomal Na+/H+ exchanger NHE9 in both autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD). Plasma membrane NHEs regulate cytosolic pH, but the role of intracellular isoforms has remained unclear. We now find that inactivation of NHE9 in mice reproduces behavioral features of ASD including impaired social interaction, repetitive behaviors, and altered sensory processing. Physiological characterization reveals hyperacidic endosomes, a cell-autonomous defect in glutamate receptor expression and impaired neurotransmitter release due to a defect in presynaptic Ca2+ entry. Acute inhibition of synaptic vesicle acidification rescues release but without affecting the primary defect due to loss of NHE9

    A genetic variant of the sperm-specific SLO3 K+ channel has altered pH and Ca2+ sensitivities

    Get PDF
    To fertilize an oocyte, sperm must first undergo capacitation in which the sperm plasma membrane becomes hyperpolarized via activation of potassium (K(+)) channels and resultant K(+) efflux. Sperm-specific SLO3 K(+) channels are responsible for these membrane potential changes critical for fertilization in mouse sperm, and they are only sensitive to pH i However, in human sperm, the major K(+) conductance is both Ca(2+)- and pH i -sensitive. It has been debated whether Ca(2+)-sensitive SLO1 channels substitute for human SLO3 (hSLO3) in human sperm or whether human SLO3 channels have acquired Ca(2+) sensitivity. Here we show that hSLO3 is rapidly evolving and reveal a natural structural variant with enhanced apparent Ca(2+) and pH sensitivities. This variant allele (C382R) alters an amino acid side chain at a principal interface between the intramembrane-gated pore and the cytoplasmic gating ring of the channel. Because the gating ring contains sensors to intracellular factors such as pH and Ca(2+), the effectiveness of transduction between the gating ring and the pore domain appears to be enhanced. Our results suggest that sperm-specific genes can evolve rapidly and that natural genetic variation may have led to a SLO3 variant that differs from wild type in both pH and intracellular Ca(2+) sensitivities. Whether this physiological variation confers differences in fertility among males remains to be established.info:eu-repo/semantics/publishe

    Miniature electrometer preamplifier effectively compensates for input capacitance

    Get PDF
    Negative capacitance preamplifier using a dual MOS /Metal Oxide Silicon/ transistor in conjunction with bipolar transistors is used with intracellular microelectrodes in recording bioelectric potentials. Applications would include use as a pickup plate video amplifier in storage tube tests and for pH and ionization chamber measurements

    pH Dependence and Stoichiometry of Binding to the Fc Region of IgG by the Herpes Simplex Virus Fc Receptor gE-gI

    Get PDF
    Herpes simplex virus type 1 encodes two glycoproteins, gE and gI, that form a heterodimer on the surface of virions and infected cells. The gE-gI heterodimer has been implicated in cell-to-cell spread of virus and is a receptor for the Fc fragment of IgG. Previous studies localized the gE-gI-binding site on human IgG to a region near the interface between the CH2 and CH3 domains of Fc, which also serves as the binding site for bacterial and mammalian Fc receptors. Although there are two potential gE-gI-binding sites per Fc homodimer, only one gE-gI heterodimer binds per IgG in gel filtration experiments. Here we report production of recombinant human Fc molecules that contain zero, one, or two potential gE-gI-binding sites and use them in analytical ultracentrifugation experiments to show that two gE-gI heterodimers can bind to each Fc. Further characterization of the gE-gI interaction with Fc reveals a sharp pH dependence of binding, with KD values of ~340 and ~930 nM for the first and second binding events, respectively, at the slightly basic pH of the cell surface (pH 7.4), but undetectable binding at pH 6.0. This strongly pH-dependent interaction suggests a physiological role for gE-gI dissociation from IgG within acidic intracellular compartments, consistent with a mechanism whereby herpes simplex virus promotes intracellular degradation of anti-viral antibodies

    PRODUCTION AND CHARACTERIZATION OF CRUDE INTRACELLULER PHYTASE FROM RECOMBINANT BACTERIA pEAS1AMP

    Get PDF
    This research was aimed at producing a crude intracellular phytase characterized from recombinant bacteria. The recombinant bacteria (pEAS1AMP) was produced by way of transforming pET-22b(+) +pEAS1 into competent E. coli BL21 and E. coli BL21(DE3) cells. Crude intracellular phytase production was induced using 1,5 mM Isopropyl-β-D-thiogalactopyranosid (IPTG). Recombinant bacteria product and enzyme activity test followed the Sajidan method. E. coli BL21(+)pEAS1 and E. coli BL21 (DE3)(+)pEAS1 recombinant bacteria showed growth after 20 hours and 10 hours of transformation. Phytase activity of E. coli BL21 (DE3)(+)+pEAS1 showed higher than those of E. coli BL21(+)+pEAS1. Crude intracellular phytase of pEAS1AMP recombinant bacteria has an optimum activity at pH 5, 40o C, incubation period of 60 minutes, substrate concentration of 2%, molecular weight (MW) of 47.3 kDa, Km = 15.91 υM and Vm = 2.41 υM/second. Mg2+ acts as a cofactor but Fe3+ (10-4 M) acts as an inhibitor. Keywords: bacteria recombinant pEAS1AMP, competent cells, crude intracellular phytas
    corecore