135,476 research outputs found

    The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression

    Get PDF
    The gastrointestinal tract represents the first barrier against food contaminants as well as the first target for these toxicants. Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals and causes various toxicological effects. Through consumption of contaminated cereals and cereal products, human and pigs are exposed to this mycotoxin. Using in vitro, ex vivo, and in vivo approaches, we investigated the effects of DON on the intestinal epithelium. We demonstrated that, in intestinal epithelial cell lines from porcine (IPEC-1) or human (Caco-2) origin, DON decreases trans-epithelial electric resistance (TEER) and increases in a time and dose-dependent manner the paracellular permeability to 4 kDa dextran and to pathogenic Escherichia Coli across intestinal cell monolayers. In pig explants treated with DON, we also observed an increased permeability of intestinal tissue. These alterations of barrier function were associated with a specific reduction in the expression of claudins, which was also seen in vivo in the jejunum of piglets exposed to DON-contaminated feed. In conclusion, DON alters claudin expression and decreases the barrier function of the intestinal epithelium. Considering that high levels of DON may be present in food or feed, consumption of DON-contaminated food/feed may induce intestinal damage and has consequences for human and animal health

    Intestine‐Specific Expression of Human Chimeric Intestinal Alkaline Phosphatase Attenuates Western Diet‐Induced Barrier Dysfunction and Glucose Intolerance

    Get PDF
    Intestinal epithelial cell derived alkaline phosphatase (IAP) dephosphorylates/detoxifies bacterial endotoxin lipopolysaccharide (LPS) in the gut lumen. We have earlier demonstrated that consumption of high‐fat high‐cholesterol containing western type‐diet (WD) significantly reduces IAP activity, increases intestinal permeability leading to increased plasma levels of LPS and glucose intolerance. Furthermore, oral supplementation with curcumin that increased IAP activity improved intestinal barrier function as well as glucose tolerance. To directly test the hypothesis that targeted increase in IAP would protect against WD‐induced metabolic consequences, we developed intestine‐specific IAP transgenic mice where expression of human chimeric IAP is under the control of intestine‐specific villin promoter. This chimeric human IAP contains domains from human IAP and human placental alkaline phosphatase, has a higher turnover number, narrower substrate specificity, and selectivity for bacterial LPS. Chimeric IAP was specifically and uniformly overexpressed in these IAP transgenic (IAPTg) mice along the entire length of the intestine. While IAP activity reduced from proximal P1 segment to distal P9 segment in wild‐type (WT) mice, this activity was maintained in the IAPTg mice. Dietary challenge with WD impaired glucose tolerance in WT mice and this intolerance was attenuated in IAPTg mice. Significant decrease in fecal zonulin, a marker for intestinal barrier dysfunction, in WD fed IAPTg mice and a corresponding decrease in translocation of orally administered nonabsorbable 4 kDa FITC dextran to plasma suggests that IAP overexpression improves intestinal barrier function. Thus, targeted increase in IAP activity represents a novel strategy to improve WD‐induced intestinal barrier dysfunction and glucose intolerance

    Mechanisms of Intestinal Epithelial Barrier Dysfunction by Adherent-Invasive Escherichia coli.

    Get PDF
    Pathobiont expansion, such as that of adherent-invasive Escherichia coli (AIEC), is an emerging factor associated with inflammatory bowel disease. The intestinal epithelial barrier is the first line of defense against these pathogens. Inflammation plays a critical role in altering the epithelial barrier and is a major factor involved in promoting the expansion and pathogenesis of AIEC. AIEC in turn can exacerbate intestinal epithelial barrier dysfunction by targeting multiple elements of the barrier. One critical element of the epithelial barrier is the tight junction. Increasing evidence suggests that AIEC may selectively target protein components of tight junctions, leading to increased barrier permeability. This may represent one mechanism by which AIEC could contribute to the development of inflammatory bowel disease. This review article discusses potential mechanisms by which AIEC can disrupt epithelial tight junction function and intestinal barrier function

    Celiac Disease Monocytes Induce a Barrier Defect in Intestinal Epithelial Cells

    Get PDF
    Intestinal epithelial barrier function in celiac disease (CeD) patients is altered. However, the mechanism underlying this effect is not fully understood. The aim of the current study was to evaluate the role of monocytes in eliciting the epithelial barrier defect in CeD. For this purpose, human monocytes were isolated from peripheral blood mononuclear cells (PBMCs) from active and inactive CeD patients and healthy controls. PBMCs were sorted for expression of CD14 and co-cultured with intestinal epithelial cells (IECs, Caco2BBe). Barrier function, as well as tight junctional alterations, were determined. Monocytes were characterized by profiling of cytokines and surface marker expression. Transepithelial resistance was found to be decreased only in IECs that had been exposed to celiac monocytes. In line with this, tight junctional alterations were found by confocal laser scanning microscopy and Western blotting of ZO-1, occludin, and claudin-5. Analysis of cytokine concentrations in monocyte supernatants revealed higher expression of interleukin-6 and MCP-1 in celiac monocytes. However, surface marker expression, as analyzed by FACS analysis after immunostaining, did not reveal significant alterations in celiac monocytes. In conclusion, CeD peripheral monocytes reveal an intrinsically elevated pro-inflammatory cytokine pattern that is associated with the potential of peripheral monocytes to affect barrier function by altering TJ composition

    Intestinal Barrier Function in Gluten-Related Disorders

    Get PDF
    Gluten-related disorders include distinct disease entities, namely celiac disease, wheat-associated allergy and non-celiac gluten/wheat sensitivity. Despite having in common the contact of the gastrointestinal mucosa with components of wheat and other cereals as a causative factor, these clinical entities have distinct pathophysiological pathways. In celiac disease, a T-cell mediate immune reaction triggered by gluten ingestion is central in the pathogenesis of the enteropathy, while wheat allergy develops as a rapid immunoglobulin E- or non-immunoglobulin E-mediated immune response. In non-celiac wheat sensitivity, classical adaptive immune responses are not involved. Instead, recent research has revealed that an innate immune response to a yet-to-be-defined antigen, as well as the gut microbiota, are pivotal in the development in this disorder. Although impairment of the epithelial barrier has been described in all three clinical conditions, its role as a potential pathogenetic co-factor, specifically in celiac disease and non-celiac wheat sensitivity, is still a matter of investigation. This article gives a short overview of the mucosal barrier of the small intestine, summarizes the aspects of barrier dysfunction observed in all three gluten-related disorders and reviews literature data in favor of a primary involvement of the epithelial barrier in the development of celiac disease and non-celiac wheat sensitivity

    Boswellia serrata Preserves Intestinal Epithelial Barrier from Oxidative and Inflammatory Damage

    Get PDF
    Aminosalicylates, corticosteroids and immunosuppressants are currently the therapeutic choices in inflammatory bowel diseases (IBD), however, with limited remission and often serious side effects. Meanwhile complementary and alternative medicine (CAM) use is increasing, particularly herbal medicine. Boswellia serrata is a traditional Ayurvedic remedy with anti-inflammatory properties, of interest for its usefulness in IBDs. The mechanism of this pharmacological potential of Boswellia serrata was investigated in colonic epithelial cell monolayers exposed to H2O2 or INF-\u3b3+TNF-\u3b1, chosen as in vitro experimental model of intestinal inflammation. The barrier function was evaluated by the transepithelial electrical resistance (TEER) and paracellular permeability assay, and by the tight junction proteins (zonula occludens-1, ZO-1 and occludin) immunofluorescence. The expression of phosphorylated NF-\u3baB and reactive oxygen species (ROS) generation were determined by immunoblot and cytofluorimetric assay, respectively. Boswellia serrata oleo-gum extract (BSE) and its pure derivative acetyl-11-keto-\u3b2-boswellic acid (AKBA), were tested at 0.1-10 \u3bcg/ml and 0.027\u3bcg/ml, respectively. BSE and AKBA safety was demonstrated by no alteration of intestinal cell viability and barrier function and integrity biomarkers. H2O2 or INF-\u3b3+TNF-\u3b1 treatment of Caco-2 cell monolayers significantly reduced TEER, increased paracellular permeability and caused the disassembly of tight junction proteins occludin and ZO-1. BSE and AKBA pretreatment significantly prevented functional and morphological alterations and also the NF-\u3baB phosphorylation induced by the inflammatory stimuli. At the same concentrations BSE and AKBA counteracted the increase of ROS caused by H2O2 exposure. Data showed the positive correlation of the antioxidant activity with the mechanism involved in the physiologic maintenance of the integrity and function of the intestinal epithelium. This study elucidates the pharmacological mechanisms mediated by BSE, in protecting intestinal epithelial barrier from inflammatory damage and supports its use as safe adjuvant in patients affected by IBD

    Intestinal barrier function and absorption in pigs after waeaning: a review

    Get PDF
    Under commercial conditions, weaning of piglets is associated with social, environmental and dietary stress. Consequently, small-intestinal barrier and absorptive functions deteriorate within a short time after weaning. Most studies that have assessed small-intestinal permeability in pigs after weaning used either Ussing chambers or orally administered marker probes. Paracellular barrier function and active absorption decrease when pigs are weaned at 3 weeks of age or earlier. However, when weaned at 4 weeks of age or later, the barrier function is less affected, and active absorption is not affected or is increased. Weaning stress is a critical factor in relation to the compromised paracellular barrier function after weaning. Adequate feed intake levels after weaning prevent the loss of the intestinal barrier function. Transcellular transport of macromolecules and passive transcellular absorption decrease after weaning. This may reflect a natural intestinal maturation process that is enhanced by the weaning process and prevents the pig from an antigen overload. It seems that passive and active absorption after weaning adapt accurately to the new environment when pigs are weaned after 3 weeks of age. However, when weaned at 3 weeks of age or earlier, the decrease in active absorption indicates that pigs are unable to sufficiently adapt to the new environment. To improve weaning strategies, future studies should distinguish whether the effect of feed intake on barrier function can be directed to a lack of a specific nutrient, i.e. energy or protein

    Macrobiota — helminths as active participants and partners of the microbiota in host intestinal homeostasis

    Get PDF
    Important insights have recently been gained in our understanding of the intricate relationship in the intestinal milieu between the vertebrate host mucosal immune response, commensal bacteria, and helminths. Helminths are metazoan worms (macrobiota) and trigger immune responses that include potent regulatory components capable of controlling harmful inflammation, protecting barrier function and mitigating tissue damage. They can secrete a variety of products that directly affect immune regulatory function but they also have the capacity to influence the composition of microbiota, which can also then impact immune function. Conversely, changes in microbiota can affect susceptibility to helminth infection, indicating that crosstalk between these two disparate groups of endobiota can play an essential role in host intestinal immune function and homeostasis

    Cigarette smoking alters intestinal barrier function and Peyer's Patch composition

    Get PDF
    Smokers have a two-fold increased risk to develop Crohn’s disease (CD). However, little is known about the mechanisms through which smoking affects CD pathogenesis. Interestingly, the Peyer’s patches in the terminal ileum are the sites where the first CD lesions develop. To investigate whether smoke exposure causes alterations in Peyer’s patches, we studied C57BL/6 mice after exposure to air or cigarette smoke for 24 weeks. First, barrier function of the follicle-associated epithelium overlying Peyer’s patches was evaluated. We demonstrate that chronic smoke exposure is associated with increased apoptosis in the follicle-associated epithelium. Furthermore, immune cell numbers and differentiation along with chemokine expression were determined in the ileal Peyer’s patches. We observed significant increases in total dendritic cells (DC), CD4+ T-cells (including regulatory T-cells) and CD8+ T-cells after smoke exposure compared with air-exposed animals. The CD11b+ DC subset almost doubled. Interestingly, these changes were accompanied by an up-regulated mRNA expression of the chemokines CCL9 and CCL20, which are known to attract CD11b+ DC towards the subepithelial dome of Peyer’s patches. Our results demonstrate that cigarette smoke exposure induces apoptosis in follicle-associated epithelium and is associated with immune cell accumulation in Peyer’s patches, changes which can predispose to the development of CD
    corecore