1,697 research outputs found

    Causal Confusion in Imitation Learning

    Get PDF
    Behavioral cloning reduces policy learning to supervised learning by training a discriminative model to predict expert actions given observations. Such discriminative models are non-causal: the training procedure is unaware of the causal structure of the interaction between the expert and the environment. We point out that ignoring causality is particularly damaging because of the distributional shift in imitation learning. In particular, it leads to a counter-intuitive "causal misidentification" phenomenon: access to more information can yield worse performance. We investigate how this problem arises, and propose a solution to combat it through targeted interventions---either environment interaction or expert queries---to determine the correct causal model. We show that causal misidentification occurs in several benchmark control domains as well as realistic driving settings, and validate our solution against DAgger and other baselines and ablations.Comment: Published at NeurIPS 2019 9 pages, plus references and appendice

    Observational-Interventional Priors for Dose-Response Learning

    Get PDF
    Controlled interventions provide the most direct source of information for learning causal effects. In particular, a dose-response curve can be learned by varying the treatment level and observing the corresponding outcomes. However, interventions can be expensive and time-consuming. Observational data, where the treatment is not controlled by a known mechanism, is sometimes available. Under some strong assumptions, observational data allows for the estimation of dose-response curves. Estimating such curves nonparametrically is hard: sample sizes for controlled interventions may be small, while in the observational case a large number of measured confounders may need to be marginalized. In this paper, we introduce a hierarchical Gaussian process prior that constructs a distribution over the dose-response curve by learning from observational data, and reshapes the distribution with a nonparametric affine transform learned from controlled interventions. This function composition from different sources is shown to speed-up learning, which we demonstrate with a thorough sensitivity analysis and an application to modeling the effect of therapy on cognitive skills of premature infants

    Causally Disentangled Generative Variational AutoEncoder

    Full text link
    We present a new supervised learning technique for the Variational AutoEncoder (VAE) that allows it to learn a causally disentangled representation and generate causally disentangled outcomes simultaneously. We call this approach Causally Disentangled Generation (CDG). CDG is a generative model that accurately decodes an output based on a causally disentangled representation. Our research demonstrates that adding supervised regularization to the encoder alone is insufficient for achieving a generative model with CDG, even for a simple task. Therefore, we explore the necessary and sufficient conditions for achieving CDG within a specific model. Additionally, we introduce a universal metric for evaluating the causal disentanglement of a generative model. Empirical results from both image and tabular datasets support our findings
    • …
    corecore