1 research outputs found

    Interval Sine and Cosine Functions Computation Based on Variable-Precision CORDIC Algorithm

    No full text
    In this paper we design a CORDIC architecture for variable--precision, and a new algorithm is proposed to perform the interval sine and cosine functions. This system allows us to specify the precision to perform the sine and cosine functions, and control the accuracy of the result, in such a way that recomputation of inaccurate results can be carried out with higher precision. An important reduction in the number of iterations is obtained by taking advantage of the differential angle, and the number of cycles per iteration is reduced by avoiding the additions of the leading all zero words. As a consequence, the computation time of the interval function evaluation obtained is close to that of a point function evaluation. The problem of the large table of angles and the scale factor compensation involved in a high precision CORDIC has been solved efficiently
    corecore