11 research outputs found

    Variational Bayesian Reinforcement Learning with Regret Bounds

    Full text link
    We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with an epistemic-risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized to minimize regret, or annealed according to a schedule. We call the resulting algorithm K-learning and we show that the K-values that the agent maintains are optimistic for the expected optimal Q-values at each state-action pair. The utility function approach induces a natural Boltzmann exploration policy for which the 'temperature' parameter is equal to the risk-seeking parameter. This policy achieves a Bayesian regret bound of O~(L3/2SAT)\tilde O(L^{3/2} \sqrt{SAT}), where L is the time horizon, S is the number of states, A is the number of actions, and T is the total number of elapsed time-steps. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice

    Did we personalize? Assessing personalization by an online reinforcement learning algorithm using resampling

    Full text link
    There is a growing interest in using reinforcement learning (RL) to personalize sequences of treatments in digital health to support users in adopting healthier behaviors. Such sequential decision-making problems involve decisions about when to treat and how to treat based on the user's context (e.g., prior activity level, location, etc.). Online RL is a promising data-driven approach for this problem as it learns based on each user's historical responses and uses that knowledge to personalize these decisions. However, to decide whether the RL algorithm should be included in an ``optimized'' intervention for real-world deployment, we must assess the data evidence indicating that the RL algorithm is actually personalizing the treatments to its users. Due to the stochasticity in the RL algorithm, one may get a false impression that it is learning in certain states and using this learning to provide specific treatments. We use a working definition of personalization and introduce a resampling-based methodology for investigating whether the personalization exhibited by the RL algorithm is an artifact of the RL algorithm stochasticity. We illustrate our methodology with a case study by analyzing the data from a physical activity clinical trial called HeartSteps, which included the use of an online RL algorithm. We demonstrate how our approach enhances data-driven truth-in-advertising of algorithm personalization both across all users as well as within specific users in the study.Comment: The first two authors contributed equall
    corecore