21,616 research outputs found

    Magnetohydrodynamic convectons

    Get PDF
    Numerical continuation is used to compute branches of spatially localized structures in convection in an imposed vertical magnetic field. In periodic domains with finite spatial period, these branches exhibit slanted snaking and consist of localized states of even and odd parity. The properties of these states are analysed and related to existing asymptotic approaches valid either at small amplitude (Cox and Matthews, Physica D, vol. 149, 2001, p. 210), or in the limit of small magnetic diffusivity (Dawes, J. Fluid Mech., vol. 570, 2007, p. 385). The transition to standard snaking with increasing domain size is explored

    Local symmetry dynamics in one-dimensional aperiodic lattices

    Get PDF
    A unifying description of lattice potentials generated by aperiodic one-dimensional sequences is proposed in terms of their local reflection or parity symmetry properties. We demonstrate that the ranges and axes of local reflection symmetry possess characteristic distributional and dynamical properties which can be determined for every aperiodic binary lattice. A striking aspect of such a property is given by the return maps of sequential spacings of local symmetry axes, which typically traverse few-point symmetry orbits. This local symmetry dynamics allows for a classification of inherently different aperiodic lattices according to fundamental symmetry principles. Illustrating the local symmetry distributional and dynamical properties for several representative binary lattices, we further show that the renormalized axis spacing sequences follow precisely the particular type of underlying aperiodic order. Our analysis thus reveals that the long-range order of aperiodic lattices is characterized in a compellingly simple way by its local symmetry dynamics.Comment: 15 pages, 12 figure

    The Pagoda Sequence: a Ramble through Linear Complexity, Number Walls, D0L Sequences, Finite State Automata, and Aperiodic Tilings

    Full text link
    We review the concept of the number wall as an alternative to the traditional linear complexity profile (LCP), and sketch the relationship to other topics such as linear feedback shift-register (LFSR) and context-free Lindenmayer (D0L) sequences. A remarkable ternary analogue of the Thue-Morse sequence is introduced having deficiency 2 modulo 3, and this property verified via the re-interpretation of the number wall as an aperiodic plane tiling

    Refinement for Transition Systems with Responses

    Get PDF
    Motivated by the response pattern for property specifications and applications within flexible workflow management systems, we report upon an initial study of modal and mixed transition systems in which the must transitions are interpreted as must eventually, and in which implementations can contain may behaviors that are resolved at run-time. We propose Transition Systems with Responses (TSRs) as a suitable model for this study. We prove that TSRs correspond to a restricted class of mixed transition systems, which we refer to as the action-deterministic mixed transition systems. We show that TSRs allow for a natural definition of deadlocked and accepting states. We then transfer the standard definition of refinement for mixed transition systems to TSRs and prove that refinement does not preserve deadlock freedom. This leads to the proposal of safe refinements, which are those that preserve deadlock freedom. We exemplify the use of TSRs and (safe) refinements on a small medication workflow.Comment: In Proceedings FIT 2012, arXiv:1207.348
    corecore