849,236 research outputs found
Feynman Integrals and Intersection Theory
We introduce the tools of intersection theory to the study of Feynman
integrals, which allows for a new way of projecting integrals onto a basis. In
order to illustrate this technique, we consider the Baikov representation of
maximal cuts in arbitrary space-time dimension. We introduce a minimal basis of
differential forms with logarithmic singularities on the boundaries of the
corresponding integration cycles. We give an algorithm for computing a basis
decomposition of an arbitrary maximal cut using so-called intersection numbers
and describe two alternative ways of computing them. Furthermore, we show how
to obtain Pfaffian systems of differential equations for the basis integrals
using the same technique. All the steps are illustrated on the example of a
two-loop non-planar triangle diagram with a massive loop.Comment: 13 pages, published versio
Intersection theory and the Alesker product
Alesker has introduced the space of {\it smooth
valuations} on a smooth manifold , and shown that it admits a natural
commutative multiplication. Although Alesker's original construction is highly
technical, from a moral perspective this product is simply an artifact of the
operation of intersection of two sets. Subsequently Alesker and Bernig gave an
expression for the product in terms of differential forms. We show how the
Alesker-Bernig formula arises naturally from the intersection interpretation,
and apply this insight to give a new formula for the product of a general
valuation with a valuation that is expressed in terms of intersections with a
sufficiently rich family of smooth polyhedra.Comment: further revisons, now 23 page
- …
