8,490 research outputs found

    Computational Method for Phase Space Transport with Applications to Lobe Dynamics and Rate of Escape

    Full text link
    Lobe dynamics and escape from a potential well are general frameworks introduced to study phase space transport in chaotic dynamical systems. While the former approach studies how regions of phase space are transported by reducing the flow to a two-dimensional map, the latter approach studies the phase space structures that lead to critical events by crossing periodic orbit around saddles. Both of these frameworks require computation with curves represented by millions of points-computing intersection points between these curves and area bounded by the segments of these curves-for quantifying the transport and escape rate. We present a theory for computing these intersection points and the area bounded between the segments of these curves based on a classification of the intersection points using equivalence class. We also present an alternate theory for curves with nontransverse intersections and a method to increase the density of points on the curves for locating the intersection points accurately.The numerical implementation of the theory presented herein is available as an open source software called Lober. We used this package to demonstrate the application of the theory to lobe dynamics that arises in fluid mechanics, and rate of escape from a potential well that arises in ship dynamics.Comment: 33 pages, 17 figure

    Snapping Graph Drawings to the Grid Optimally

    Full text link
    In geographic information systems and in the production of digital maps for small devices with restricted computational resources one often wants to round coordinates to a rougher grid. This removes unnecessary detail and reduces space consumption as well as computation time. This process is called snapping to the grid and has been investigated thoroughly from a computational-geometry perspective. In this paper we investigate the same problem for given drawings of planar graphs under the restriction that their combinatorial embedding must be kept and edges are drawn straight-line. We show that the problem is NP-hard for several objectives and provide an integer linear programming formulation. Given a plane graph G and a positive integer w, our ILP can also be used to draw G straight-line on a grid of width w and minimum height (if possible).Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016
    • …
    corecore