603 research outputs found

    Graph Learning for Anomaly Analytics: Algorithms, Applications, and Challenges

    Full text link
    Anomaly analytics is a popular and vital task in various research contexts, which has been studied for several decades. At the same time, deep learning has shown its capacity in solving many graph-based tasks like, node classification, link prediction, and graph classification. Recently, many studies are extending graph learning models for solving anomaly analytics problems, resulting in beneficial advances in graph-based anomaly analytics techniques. In this survey, we provide a comprehensive overview of graph learning methods for anomaly analytics tasks. We classify them into four categories based on their model architectures, namely graph convolutional network (GCN), graph attention network (GAT), graph autoencoder (GAE), and other graph learning models. The differences between these methods are also compared in a systematic manner. Furthermore, we outline several graph-based anomaly analytics applications across various domains in the real world. Finally, we discuss five potential future research directions in this rapidly growing field

    Graph learning for anomaly analytics : algorithms, applications, and challenges

    Get PDF
    Anomaly analytics is a popular and vital task in various research contexts that has been studied for several decades. At the same time, deep learning has shown its capacity in solving many graph-based tasks, like node classification, link prediction, and graph classification. Recently, many studies are extending graph learning models for solving anomaly analytics problems, resulting in beneficial advances in graph-based anomaly analytics techniques. In this survey, we provide a comprehensive overview of graph learning methods for anomaly analytics tasks. We classify them into four categories based on their model architectures, namely graph convolutional network, graph attention network, graph autoencoder, and other graph learning models. The differences between these methods are also compared in a systematic manner. Furthermore, we outline several graph-based anomaly analytics applications across various domains in the real world. Finally, we discuss five potential future research directions in this rapidly growing field. © 2023 Association for Computing Machinery

    Explainable Artificial Intelligence Applications in Cyber Security: State-of-the-Art in Research

    Get PDF
    This survey presents a comprehensive review of current literature on Explainable Artificial Intelligence (XAI) methods for cyber security applications. Due to the rapid development of Internet-connected systems and Artificial Intelligence in recent years, Artificial Intelligence including Machine Learning and Deep Learning has been widely utilized in the fields of cyber security including intrusion detection, malware detection, and spam filtering. However, although Artificial Intelligence-based approaches for the detection and defense of cyber attacks and threats are more advanced and efficient compared to the conventional signature-based and rule-based cyber security strategies, most Machine Learning-based techniques and Deep Learning-based techniques are deployed in the “black-box” manner, meaning that security experts and customers are unable to explain how such procedures reach particular conclusions. The deficiencies of transparencies and interpretability of existing Artificial Intelligence techniques would decrease human users’ confidence in the models utilized for the defense against cyber attacks, especially in current situations where cyber attacks become increasingly diverse and complicated. Therefore, it is essential to apply XAI in the establishment of cyber security models to create more explainable models while maintaining high accuracy and allowing human users to comprehend, trust, and manage the next generation of cyber defense mechanisms. Although there are papers reviewing Artificial Intelligence applications in cyber security areas and the vast literature on applying XAI in many fields including healthcare, financial services, and criminal justice, the surprising fact is that there are currently no survey research articles that concentrate on XAI applications in cyber security. Therefore, the motivation behind the survey is to bridge the research gap by presenting a detailed and up-to-date survey of XAI approaches applicable to issues in the cyber security field. Our work is the first to propose a clear roadmap for navigating the XAI literature in the context of applications in cyber security

    Table2Vec-automated universal representation learning of enterprise data DNA for benchmarkable and explainable enterprise data science.

    Full text link
    Enterprise data typically involves multiple heterogeneous data sources and external data that respectively record business activities, transactions, customer demographics, status, behaviors, interactions and communications with the enterprise, and the consumption and feedback of its products, services, production, marketing, operations, and management, etc. They involve enterprise DNA associated with domain-oriented transactions and master data, informational and operational metadata, and relevant external data. A critical challenge in enterprise data science is to enable an effective 'whole-of-enterprise' data understanding and data-driven discovery and decision-making on all-round enterprise DNA. Accordingly, here we introduce a neural encoder Table2Vec for automated universal representation learning of entities such as customers from all-round enterprise DNA with automated data characteristics analysis and data quality augmentation. The learned universal representations serve as representative and benchmarkable enterprise data genomes (similar to biological genomes and DNA in organisms) and can be used for enterprise-wide and domain-specific learning tasks. Table2Vec integrates automated universal representation learning on low-quality enterprise data and downstream learning tasks. Such automated universal enterprise representation and learning cannot be addressed by existing enterprise data warehouses (EDWs), business intelligence and corporate analytics systems, where 'enterprise big tables' are constructed with reporting and analytics conducted by specific analysts on respective domain subjects and goals. It addresses critical limitations and gaps of existing representation learning, enterprise analytics and cloud analytics, which are analytical subject, task and data-specific, creating analytical silos in an enterprise. We illustrate Table2Vec in characterizing all-round customer data DNA in an enterprise on complex heterogeneous multi-relational big tables to build universal customer vector representations. The learned universal representation of each customer is all-round, representative and benchmarkable to support both enterprise-wide and domain-specific learning goals and tasks in enterprise data science. Table2Vec significantly outperforms the existing shallow, boosting and deep learning methods typically used for enterprise analytics. We further discuss the research opportunities, directions and applications of automated universal enterprise representation and learning and the learned enterprise data DNA for automated, all-purpose, whole-of-enterprise and ethical machine learning and data science

    Distributed detection of anomalous internet sessions

    Get PDF
    Financial service providers are moving many services online reducing their costs and facilitating customers¿ interaction. Unfortunately criminals have quickly found several ways to avoid most security measures applied to browsers and banking sites. The use of highly dangerous malware has become the most significant threat and traditional signature-detection methods are nowadays easily circumvented due to the amount of new samples and the use of sophisticated evasion techniques. Antivirus vendors and malware experts are pushed to seek for new methodologies to improve the identification and understanding of malicious applications behavior and their targets. Financial institutions are now playing an important role by deploying their own detection tools against malware that specifically affect their customers. However, most detection approaches tend to base on sequence of bytes in order to create new signatures. This thesis approach is based on new sources of information: the web logs generated from each banking session, the normal browser execution and customers mobile phone behavior. The thesis can be divided in four parts: The first part involves the introduction of the thesis along with the presentation of the problems and the methodology used to perform the experimentation. The second part describes our contributions to the research, which are based in two areas: *Server side: Weblogs analysis. We first focus on the real time detection of anomalies through the analysis of web logs and the challenges introduced due to the amount of information generated daily. We propose different techniques to detect multiple threats by deploying per user and global models in a graph based environment that will allow increase performance of a set of highly related data. *Customer side: Browser analysis. We deal with the detection of malicious behaviors from the other side of a banking session: the browser. Malware samples must interact with the browser in order to retrieve or add information. Such relation interferes with the normal behavior of the browser. We propose to develop models capable of detecting unusual patterns of function calls in order to detect if a given sample is targeting an specific financial entity. In the third part, we propose to adapt our approaches to mobile phones and Critical Infrastructures environments. The latest online banking attack techniques circumvent protection schemes such password verification systems send via SMS. Man in the Mobile attacks are capable of compromising mobile devices and gaining access to SMS traffic. Once the Transaction Authentication Number is obtained, criminals are free to make fraudulent transfers. We propose to model the behavior of the applications related messaging services to automatically detect suspicious actions. Real time detection of unwanted SMS forwarding can improve the effectiveness of second channel authentication and build on detection techniques applied to browsers and Web servers. Finally, we describe possible adaptations of our techniques to another area outside the scope of online banking: critical infrastructures, an environment with similar features since the applications involved can also be profiled. Just as financial entities, critical infrastructures are experiencing an increase in the number of cyber attacks, but the sophistication of the malware samples utilized forces to new detection approaches. The aim of the last proposal is to demonstrate the validity of out approach in different scenarios. Conclusions. Finally, we conclude with a summary of our findings and the directions for future work

    Explainable Artificial Intelligence and Causal Inference based ATM Fraud Detection

    Full text link
    Gaining the trust of customers and providing them empathy are very critical in the financial domain. Frequent occurrence of fraudulent activities affects these two factors. Hence, financial organizations and banks must take utmost care to mitigate them. Among them, ATM fraudulent transaction is a common problem faced by banks. There following are the critical challenges involved in fraud datasets: the dataset is highly imbalanced, the fraud pattern is changing, etc. Owing to the rarity of fraudulent activities, Fraud detection can be formulated as either a binary classification problem or One class classification (OCC). In this study, we handled these techniques on an ATM transactions dataset collected from India. In binary classification, we investigated the effectiveness of various over-sampling techniques, such as the Synthetic Minority Oversampling Technique (SMOTE) and its variants, Generative Adversarial Networks (GAN), to achieve oversampling. Further, we employed various machine learning techniques viz., Naive Bayes (NB), Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Gradient Boosting Tree (GBT), Multi-layer perceptron (MLP). GBT outperformed the rest of the models by achieving 0.963 AUC, and DT stands second with 0.958 AUC. DT is the winner if the complexity and interpretability aspects are considered. Among all the oversampling approaches, SMOTE and its variants were observed to perform better. In OCC, IForest attained 0.959 CR, and OCSVM secured second place with 0.947 CR. Further, we incorporated explainable artificial intelligence (XAI) and causal inference (CI) in the fraud detection framework and studied it through various analyses.Comment: 34 pages; 21 Figures; 8 Table
    corecore