807 research outputs found

    Mod-phi convergence I: Normality zones and precise deviations

    Full text link
    In this paper, we use the framework of mod-ϕ\phi convergence to prove precise large or moderate deviations for quite general sequences of real valued random variables (Xn)n∈N(X_{n})_{n \in \mathbb{N}}, which can be lattice or non-lattice distributed. We establish precise estimates of the fluctuations P[Xn∈tnB]P[X_{n} \in t_{n}B], instead of the usual estimates for the rate of exponential decay log⁥(P[Xn∈tnB])\log( P[X_{n}\in t_{n}B]). Our approach provides us with a systematic way to characterise the normality zone, that is the zone in which the Gaussian approximation for the tails is still valid. Besides, the residue function measures the extent to which this approximation fails to hold at the edge of the normality zone. The first sections of the article are devoted to a proof of these abstract results and comparisons with existing results. We then propose new examples covered by this theory and coming from various areas of mathematics: classical probability theory, number theory (statistics of additive arithmetic functions), combinatorics (statistics of random permutations), random matrix theory (characteristic polynomials of random matrices in compact Lie groups), graph theory (number of subgraphs in a random Erd\H{o}s-R\'enyi graph), and non-commutative probability theory (asymptotics of random character values of symmetric groups). In particular, we complete our theory of precise deviations by a concrete method of cumulants and dependency graphs, which applies to many examples of sums of "weakly dependent" random variables. The large number as well as the variety of examples hint at a universality class for second order fluctuations.Comment: 103 pages. New (final) version: multiple small improvements ; a new section on mod-Gaussian convergence coming from the factorization of the generating function ; the multi-dimensional results have been moved to a forthcoming paper ; and the introduction has been reworke

    Asymptotic of geometrical navigation on a random set of points of the plane

    Full text link
    A navigation on a set of points SS is a rule for choosing which point to move to from the present point in order to progress toward a specified target. We study some navigations in the plane where SS is a non uniform Poisson point process (in a finite domain) with intensity going to +∞+\infty. We show the convergence of the traveller path lengths, the number of stages done, and the geometry of the traveller trajectories, uniformly for all starting points and targets, for several navigations of geometric nature. Other costs are also considered. This leads to asymptotic results on the stretch factors of random Yao-graphs and random ξ\theta-graphs

    Counting points on varieties over finite fields related to a conjecture of Kontsevich

    Full text link
    We describe a characteristic-free algorithm for “reducing” an algebraic variety defined by the vanishing of a set of integer polynomials. In very special cases, the algorithm can be used to decide whether the number of points on a variety, as the ground field varies over finite fields, is a polynomial function of the size of the field. The algorithm is then used to investigate a conjecture of Kontsevich regarding the number of points on a variety associated with the set of spanning trees of any graph. We also prove several theorems describing properties of a (hypothetical) minimal counterexample to the conjecture, and produce counterexamples to some related conjectures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43265/1/26_2005_Article_BF01608531.pd
    • 

    corecore