40,586 research outputs found

    Virtualized Control over Fog: Interplay Between Reliability and Latency

    Full text link
    This paper introduces an analytical framework to investigate optimal design choices for the placement of virtual controllers along the cloud-to-things continuum. The main application scenarios include low-latency cyber-physical systems in which real-time control actions are required in response to the changes in states of an IoT node. In such cases, deploying controller software on a cloud server is often not tolerable due to delay from the network edge to the cloud. Hence, it is desirable to trade reliability with latency by moving controller logic closer to the network edge. Modeling the IoT node as a dynamical system that evolves linearly in time with quadratic penalty for state deviations, recursive expressions for the optimum control policy and the resulting minimum cost value are obtained by taking virtual fog controller reliability and response time latency into account. Our results indicate that latency is more critical than reliability in provisoning virtualized control services over fog endpoints, as it determines the swiftness of the fog control system as well as the timeliness of state measurements. Based on a realistic drone trajectory tracking model, an extensive simulation study is also performed to illustrate the influence of reliability and latency on the control of autonomous vehicles over fog

    An Amateur Drone Surveillance System Based on Cognitive Internet of Things

    Full text link
    Drones, also known as mini-unmanned aerial vehicles, have attracted increasing attention due to their boundless applications in communications, photography, agriculture, surveillance and numerous public services. However, the deployment of amateur drones poses various safety, security and privacy threats. To cope with these challenges, amateur drone surveillance becomes a very important but largely unexplored topic. In this article, we firstly present a brief survey to show the state-of-the-art studies on amateur drone surveillance. Then, we propose a vision, named Dragnet, by tailoring the recent emerging cognitive internet of things framework for amateur drone surveillance. Next, we discuss the key enabling techniques for Dragnet in details, accompanied with the technical challenges and open issues. Furthermore, we provide an exemplary case study on the detection and classification of authorized and unauthorized amateur drones, where, for example, an important event is being held and only authorized drones are allowed to fly over

    Artificial Intelligence-Based Techniques for Emerging Robotics Communication: A Survey and Future Perspectives

    Full text link
    This paper reviews the current development of artificial intelligence (AI) techniques for the application area of robot communication. The study of the control and operation of multiple robots collaboratively toward a common goal is fast growing. Communication among members of a robot team and even including humans is becoming essential in many real-world applications. The survey focuses on the AI techniques for robot communication to enhance the communication capability of the multi-robot team, making more complex activities, taking an appreciated decision, taking coordinated action, and performing their tasks efficiently.Comment: 11 pages, 6 figure

    An Exploration of Blockchain Enabled Decentralized Capability based Access Control Strategy for Space Situation Awareness

    Full text link
    Space situation awareness (SSA) includes tracking of active and inactive resident space objects (RSOs) and assessing the space environment through sensor data collection and processing. To enhance SSA, the dynamic data-driven applications systems (DDDAS) framework couples on-line data with off-line models to enhance system performance. Using feedback control, sensor management, and communications reliability. For information management, there is a need for identity authentication and access control to ensure the integrity of exchanged data as well as to grant authorized entities access right to data and services. Due to decentralization and heterogeneity of SSA systems, it is challenging to build an efficient centralized access control system, which could either be a performance bottleneck or the single point of failure. Inspired by the blockchain and smart contract technology, this paper introduces BlendCAC, a decentralized authentication and capability-based access control mechanism to enable effective protection for devices, services and information in SSA networks. To achieve secure identity authentication, the BlendCAC leverages the blockchain to create virtual trust zones and a robust identity-based capability token management strategy is proposed. A proof-of-concept prototype has been implemented on both resources-constrained devices and more powerful computing devices, and is tested on a private Ethereum blockchain network. The experimental results demonstrate the feasibility of the BlendCAC scheme to offer a decentralized, scalable, lightweight and fine-grained access control solution for space system towards SSA.Comment: Submitted to SPIE Optical Engineering, Special Section on Sensors and Systems for Space Applications. arXiv admin note: substantial text overlap with arXiv:1804.0926

    A Microservice-enabled Architecture for Smart Surveillance using Blockchain Technology

    Full text link
    While the smart surveillance system enhanced by the Internet of Things (IoT) technology becomes an essential part of Smart Cities, it also brings new concerns in security of the data. Compared to the traditional surveillance systems that is built following a monolithic architecture to carry out lower level operations, such as monitoring and recording, the modern surveillance systems are expected to support more scalable and decentralized solutions for advanced video stream analysis at the large volumes of distributed edge devices. In addition, the centralized architecture of the conventional surveillance systems is vulnerable to single point of failure and privacy breach owning to the lack of protection to the surveillance feed. This position paper introduces a novel secure smart surveillance system based on microservices architecture and blockchain technology. Encapsulating the video analysis algorithms as various independent microservices not only isolates the video feed from different sectors, but also improve the system availability and robustness by decentralizing the operations. The blockchain technology securely synchronizes the video analysis databases among microservices across surveillance domains, and provides tamper proof of data in the trustless network environment. Smart contract enabled access authorization strategy prevents any unauthorized user from accessing the microservices and offers a scalable, decentralized and fine-grained access control solution for smart surveillance systems.Comment: Submitted as a position paper to the 1st International Workshop on BLockchain Enabled Sustainable Smart Cities (BLESS 2018

    Design Challenges of Multi-UAV Systems in Cyber-Physical Applications: A Comprehensive Survey, and Future Directions

    Full text link
    Unmanned Aerial Vehicles (UAVs) have recently rapidly grown to facilitate a wide range of innovative applications that can fundamentally change the way cyber-physical systems (CPSs) are designed. CPSs are a modern generation of systems with synergic cooperation between computational and physical potentials that can interact with humans through several new mechanisms. The main advantages of using UAVs in CPS application is their exceptional features, including their mobility, dynamism, effortless deployment, adaptive altitude, agility, adjustability, and effective appraisal of real-world functions anytime and anywhere. Furthermore, from the technology perspective, UAVs are predicted to be a vital element of the development of advanced CPSs. Therefore, in this survey, we aim to pinpoint the most fundamental and important design challenges of multi-UAV systems for CPS applications. We highlight key and versatile aspects that span the coverage and tracking of targets and infrastructure objects, energy-efficient navigation, and image analysis using machine learning for fine-grained CPS applications. Key prototypes and testbeds are also investigated to show how these practical technologies can facilitate CPS applications. We present and propose state-of-the-art algorithms to address design challenges with both quantitative and qualitative methods and map these challenges with important CPS applications to draw insightful conclusions on the challenges of each application. Finally, we summarize potential new directions and ideas that could shape future research in these areas

    Improving risk management by using smart containers for real-time traceability

    Full text link
    This research proposes implications of application functions by using the chain traceability data acquired from the Smart Object attached with Extended Real-time Data (SO-ERD: e.g. smart container, smart pallet, etc.) to improve risk management at the level of the logistics chain. Recent applications using traceability data and major issues in traceability systems have been explored by an academic literature. Information is classified by the usage of current traceability data for supporting risk detection and decisions in operational, tactical, and strategical levels. It is found that real-time data has been a significant impact on the usage for the transportation activity in all decision levels such the function of food quality control and collaborative planning among partners. However, there are some uncertainties in the aggregation of event-based traceability data captured by various partners which are preventing the adoption of data usage for the chain. Under the environment of Industry 4.0 and the Internet of Things (IoT), the SO-ERD enables independent data tracing through the chain in real-time. Its data has potential to overcome current issues and improve the supply chain risk management. Therefore, Implications of risk management are proposed with the usage of SO-ERD data based on the literature review which reveals current concerns of decision functions in the supply chain. The implications can be an impact to the domain needs

    Differential Privacy Techniques for Cyber Physical Systems: A Survey

    Full text link
    Modern cyber physical systems (CPSs) has widely being used in our daily lives because of development of information and communication technologies (ICT).With the provision of CPSs, the security and privacy threats associated to these systems are also increasing. Passive attacks are being used by intruders to get access to private information of CPSs. In order to make CPSs data more secure, certain privacy preservation strategies such as encryption, and k-anonymity have been presented in the past. However, with the advances in CPSs architecture, these techniques also needs certain modifications. Meanwhile, differential privacy emerged as an efficient technique to protect CPSs data privacy. In this paper, we present a comprehensive survey of differential privacy techniques for CPSs. In particular, we survey the application and implementation of differential privacy in four major applications of CPSs named as energy systems, transportation systems, healthcare and medical systems, and industrial Internet of things (IIoT). Furthermore, we present open issues, challenges, and future research direction for differential privacy techniques for CPSs. This survey can serve as basis for the development of modern differential privacy techniques to address various problems and data privacy scenarios of CPSs.Comment: 46 pages, 12 figure

    Codebook-Based Beam Tracking for Conformal ArrayEnabled UAV MmWave Networks

    Full text link
    Millimeter wave (mmWave) communications can potentially meet the high data-rate requirements of unmanned aerial vehicle (UAV) networks. However, as the prerequisite of mmWave communications, the narrow directional beam tracking is very challenging because of the three-dimensional (3D) mobility and attitude variation of UAVs. Aiming to address the beam tracking difficulties, we propose to integrate the conformal array (CA) with the surface of each UAV, which enables the full spatial coverage and the agile beam tracking in highly dynamic UAV mmWave networks. More specifically, the key contributions of our work are three-fold. 1) A new mmWave beam tracking framework is established for the CA-enabled UAV mmWave network. 2) A specialized hierarchical codebook is constructed to drive the directional radiating element (DRE)-covered cylindrical conformal array (CCA), which contains both the angular beam pattern and the subarray pattern to fully utilize the potential of the CA. 3) A codebook-based multiuser beam tracking scheme is proposed, where the Gaussian process machine learning enabled UAV position/attitude predication is developed to improve the beam tracking efficiency in conjunction with the tracking-error aware adaptive beamwidth control. Simulation results validate the effectiveness of the proposed codebook-based beam tracking scheme in the CA-enabled UAV mmWave network, and demonstrate the advantages of CA over the conventional planner array in terms of spectrum efficiency and outage probability in the highly dynamic scenarios

    Robot-assisted Backscatter Localization for IoT Applications

    Full text link
    Recent years have witnessed the rapid proliferation of backscatter technologies that realize the ubiquitous and long-term connectivity to empower smart cities and smart homes. Localizing such backscatter tags is crucial for IoT-based smart applications. However, current backscatter localization systems require prior knowledge of the site, either a map or landmarks with known positions, which is laborious for deployment. To empower universal localization service, this paper presents Rover, an indoor localization system that localizes multiple backscatter tags without any start-up cost using a robot equipped with inertial sensors. Rover runs in a joint optimization framework, fusing measurements from backscattered WiFi signals and inertial sensors to simultaneously estimate the locations of both the robot and the connected tags. Our design addresses practical issues including interference among multiple tags, real-time processing, as well as the data marginalization problem in dealing with degenerated motions. We prototype Rover using off-the-shelf WiFi chips and customized backscatter tags. Our experiments show that Rover achieves localization accuracies of 39.3 cm for the robot and 74.6 cm for the tags.Comment: To appear in IEEE Transactions on Wireless Communications. arXiv admin note: substantial text overlap with arXiv:1908.0329
    corecore