3 research outputs found

    Partially Structure-Preserving Signatures: Lower Bounds, Constructions and More

    Get PDF
    In this work we first provide a framework for defining a large subset of pairing-based digital signature schemes which we call Partially Structure-Preserving Signature (PSPS) schemes. PSPS schemes are similar in nature to structure-preserving signatures with the exception that in these schemes messages are scalars from Zpn\Z^n_p instead of being source group elements. This class encompasses various existing schemes which have a number of desirable features which makes them an ideal building block for many privacy-preserving cryptographic protocols. They include the widely-used schemes of Camenisch-Lysyanskaya (CRYPTO 2004) and Pointcheval-Sanders (CT-RSA 2016). We then provide various impossibility and lower bound results for variants of this class. Our results include bounds for the signature and verification key sizes as well as lower bounds for achieving strong unforgeability. We also give a generic framework for transforming variants of PSPS schemes into structure-preserving ones. As part of our contribution, we also give a number of optimal PSPS schemes which may be of independent interest. Our results aid in understanding the efficiency of pairing-based signature schemes and show a connection between this class of signature schemes and structure-preserving ones

    More Efficient Structure-Preserving Signatures - Or: Bypassing the Type-III Lower Bounds

    Get PDF
    Structure-preserving signatures are an important cryptographic primitive that is useful for the design of modular cryptographic protocols. It has been proven that structure-preserving signatures (in the most efficient Type-III bilinear group setting) have a lower bound of 3 group elements in the signature (which must include elements from both source groups) and require at least 2 pairing-product equations for verification. In this paper, we show that such lower bounds can be circumvented. In particular, we define the notion of Unilateral Structure-Preserving Signatures on Diffie-Hellman pairs (USPSDH) which are structure-preserving signatures in the efficient Type-III bilinear group setting with the message space being the set of Diffie-Hellman pairs, in the terminology of Abe et al. (Crypto 2010). The signatures in these schemes are elements of one of the source groups, i.e. unilateral, whereas the verification key elements\u27 are from the other source group. We construct a number of new structure-preserving signature schemes which bypass the Type-III lower bounds and hence they are much more efficient than all existing structure-preserving signature schemes. We also prove optimality of our constructions by proving lower bounds and giving some impossibility results. Our contribution can be summarized as follows: \begin{itemize} \item We construct two optimal randomizable CMA-secure schemes with signatures consisting of only 2 group elements from the first short source group and therefore our signatures are at least half the size of the best existing structure-preserving scheme for unilateral messages in the (most efficient) Type-III setting. Verifying signatures in our schemes requires, besides checking the well-formedness of the message, the evaluation of a single Pairing-Product Equation (PPE) and requires a fewer pairing evaluations than all existing structure-preserving signature schemes in the Type-III setting. Our first scheme has a feature that permits controlled randomizability (combined unforgeability) where the signer can restrict some messages such that signatures on those cannot be re-randomized which might be useful for some applications. \item We construct optimal strongly unforgeable CMA-secure one-time schemes with signatures consisting of 1 group element, and which can also sign a vector of messages while maintaining the same signature size. \item We give a one-time strongly unforgeable CMA-secure structure-preserving scheme that signs unilateral messages, i.e. messages in one of the source groups, whose efficiency matches the best existing optimal one-time scheme in every respect. \item We investigate some lower bounds and prove some impossibility results regarding this variant of structure-preserving signatures. \item We give an optimal (with signatures consisting of 2 group elements and verification requiring 1 pairing-product equation) fully randomizable CMA-secure partially structure-preserving scheme that simultaneously signs a Diffie-Hellman pair and a vector in Zpk\Z^k_p. \item As an example application of one of our schemes, we obtain efficient instantiations of randomizable weakly blind signatures which do not rely on random oracles. The latter is a building block that is used, for instance, in constructing Direct Anonymous Attestation (DAA) protocols, which are protocols deployed in practice. \end{itemize} Our results offer value along two fronts: On the practical side, our constructions are more efficient than existing ones and thus could lead to more efficient instantiations of many cryptographic protocols. On the theoretical side, our results serve as a proof that many of the lower bounds for the Type-III setting can be circumvented

    Efficient Round-Optimal Blind Signatures in the Standard Model

    Get PDF
    Blind signatures are at the core of e-cash systems and have numerous other applications. In this work we construct efficient blind and partially blind signature schemes over bilinear groups in the standard model. Our schemes yield short signatures consisting of only a couple of elements from the shorter source group and have very short communication overhead consisting of 11 group element on the user side and 33 group elements on the signer side. At 8080-bit security, our schemes yield signatures consisting of only 4040 bytes which is 67%67\% shorter than the most efficient existing scheme with the same security in the standard model. Verification in our schemes requires only a couple of pairings. Our schemes compare favorably in every efficiency measure to all existing counterparts offering the same security in the standard model. In fact, the efficiency of our signing protocol as well as the signature size compare favorably even to many existing schemes in the random oracle model. For instance, our signatures are shorter than those of Brands\u27 scheme which is at the heart of the U-Prove anonymous credential system used in practice. The unforgeability of our schemes is based on new intractability assumptions of a ``one-more\u27\u27 type which we show are intractable in the generic group model, whereas their blindness holds w.r.t.~malicious signing keys in the information-theoretic sense. We also give variants of our schemes for a vector of messages
    corecore