136,828 research outputs found

    Solution Approaches for the Management of the Water Resources in Irrigation Water Systems with Fuzzy Costs

    Full text link
    [EN] Currently, the management of water networks is key to increase their sustainability. This fact implies that water managers have to develop tools that ease the decision-making process in order to improve the efficiency of irrigation networks, as well as their exploitation costs. The present research proposes a mathematical programming model to optimize the selection of the water sources and the volume over time in water networks, minimizing the operation costs as a function of the water demand and the reservoir capacity. The model, which is based on fuzzy methods, improves the evaluation performed by water managers when they have to decide about the acquisition of the water resources under uncertain costs. Different fuzzy solution approaches have been applied and assessed in terms of model complexity and computational efficiency, showing the solution accomplished for each one. A comparison between different methods was applied in a real water network, reaching a 20% total cost reduction for the best solution.Sanchis, R.; Díaz-Madroñero Boluda, FM.; López Jiménez, PA.; Pérez-Sánchez, M. (2019). Solution Approaches for the Management of the Water Resources in Irrigation Water Systems with Fuzzy Costs. Water. 11(12):1-22. https://doi.org/10.3390/w11122432S1221112Biswas, A. K. (2004). Integrated Water Resources Management: A Reassessment. Water International, 29(2), 248-256. doi:10.1080/02508060408691775Pahl-Wostl, C. (2006). Transitions towards adaptive management of water facing climate and global change. Water Resources Management, 21(1), 49-62. doi:10.1007/s11269-006-9040-4Wu, K., & Zhang, L. (2014). Progress in the Development of Environmental Risk Assessment as a Tool for the Decision-Making Process. Journal of Service Science and Management, 07(02), 131-143. doi:10.4236/jssm.2014.72011Hernández-Bedolla, J., Solera, A., Paredes-Arquiola, J., Pedro-Monzonís, M., Andreu, J., & Sánchez-Quispe, S. (2017). The Assessment of Sustainability Indexes and Climate Change Impacts on Integrated Water Resource Management. Water, 9(3), 213. doi:10.3390/w9030213Hunink, J., Simons, G., Suárez-Almiñana, S., Solera, A., Andreu, J., Giuliani, M., … Bastiaanssen, W. (2019). A Simplified Water Accounting Procedure to Assess Climate Change Impact on Water Resources for Agriculture across Different European River Basins. Water, 11(10), 1976. doi:10.3390/w11101976Pérez-Sánchez, M., Sánchez-Romero, F., Ramos, H., & López-Jiménez, P. (2016). Modeling Irrigation Networks for the Quantification of Potential Energy Recovering: A Case Study. Water, 8(6), 234. doi:10.3390/w8060234Corominas, J. (2010). Agua y energía en el riego, en la época de la sostenibilidad. Ingeniería del agua, 17(3). doi:10.4995/ia.2010.2977Romero, L., Pérez-Sánchez, M., & Amparo López-Jiménez, P. (2017). Improvement of sustainability indicators when traditional water management changes: a case study in Alicante (Spain). AIMS Environmental Science, 4(3), 502-522. doi:10.3934/environsci.2017.3.502Davies, E. G. R., & Simonovic, S. P. (2011). Global water resources modeling with an integrated model of the social–economic–environmental system. Advances in Water Resources, 34(6), 684-700. doi:10.1016/j.advwatres.2011.02.010ALCAMO, J., DÖLL, P., HENRICHS, T., KASPAR, F., LEHNER, B., RÖSCH, T., & SIEBERT, S. (2003). Development and testing of the WaterGAP 2 global model of water use and availability. Hydrological Sciences Journal, 48(3), 317-337. doi:10.1623/hysj.48.3.317.45290Sanchis, R., & Poler, R. (2019). Enterprise Resilience Assessment—A Quantitative Approach. Sustainability, 11(16), 4327. doi:10.3390/su11164327Rahaman, M. M., & Varis, O. (2005). Integrated water resources management: evolution, prospects and future challenges. Sustainability: Science, Practice and Policy, 1(1), 15-21. doi:10.1080/15487733.2005.11907961Markantonis, V., Reynaud, A., Karabulut, A., El Hajj, R., Altinbilek, D., Awad, I. M., … Bidoglio, G. (2019). Can the Implementation of the Water-Energy-Food Nexus Support Economic Growth in the Mediterranean Region? The Current Status and the Way Forward. Frontiers in Environmental Science, 7. doi:10.3389/fenvs.2019.00084Food and Agriculture Organization (FAO)www.fao.orgDirective 2000/60/EC of the European Parliament and of the Councilhttps://eur-lex.europa.eu/eli/dir/2000/60/ojNamany, S., Al-Ansari, T., & Govindan, R. (2019). Sustainable energy, water and food nexus systems: A focused review of decision-making tools for efficient resource management and governance. Journal of Cleaner Production, 225, 610-626. doi:10.1016/j.jclepro.2019.03.304Archibald, T. W., & Marshall, S. E. (2018). Review of Mathematical Programming Applications in Water Resource Management Under Uncertainty. Environmental Modeling & Assessment, 23(6), 753-777. doi:10.1007/s10666-018-9628-0Chen, S., Shao, D., Gu, W., Xu, B., Li, H., & Fang, L. (2017). An interval multistage water allocation model for crop different growth stages under inputs uncertainty. Agricultural Water Management, 186, 86-97. doi:10.1016/j.agwat.2017.03.001Xie, Y. L., Xia, D. H., Huang, G. H., Li, W., & Xu, Y. (2015). A multistage stochastic robust optimization model with fuzzy probability distribution for water supply management under uncertainty. Stochastic Environmental Research and Risk Assessment, 31(1), 125-143. doi:10.1007/s00477-015-1164-8Heumesser, C., Fuss, S., Szolgayová, J., Strauss, F., & Schmid, E. (2012). Investment in Irrigation Systems under Precipitation Uncertainty. Water Resources Management, 26(11), 3113-3137. doi:10.1007/s11269-012-0053-xPereira-Cardenal, S. J., Mo, B., Riegels, N. D., Arnbjerg-Nielsen, K., & Bauer-Gottwein, P. (2015). Optimization of Multipurpose Reservoir Systems Using Power Market Models. Journal of Water Resources Planning and Management, 141(8), 04014100. doi:10.1061/(asce)wr.1943-5452.0000500Kumari, S., & Mujumdar, P. P. (2017). Fuzzy Set–Based System Performance Evaluation of an Irrigation Reservoir System. Journal of Irrigation and Drainage Engineering, 143(5), 04017002. doi:10.1061/(asce)ir.1943-4774.0001155Jairaj, P. G., & Vedula, S. (2000). Water Resources Management, 14(6), 457-472. doi:10.1023/a:1011117918943Li, M., Guo, P., Singh, V. P., & Zhao, J. (2016). Irrigation Water Allocation Using an Inexact Two-Stage Quadratic Programming with Fuzzy Input under Climate Change. JAWRA Journal of the American Water Resources Association, 52(3), 667-684. doi:10.1111/1752-1688.12415Bozorg-Haddad, O., Malmir, M., Mohammad-Azari, S., & Loáiciga, H. A. (2016). Estimation of farmers’ willingness to pay for water in the agricultural sector. Agricultural Water Management, 177, 284-290. doi:10.1016/j.agwat.2016.08.011Raju, K. S., & Duckstein, L. (2003). Multiobjective fuzzy linear programming for sustainable irrigation planning: an Indian case study. Soft Computing - A Fusion of Foundations, Methodologies and Applications, 7(6), 412-418. doi:10.1007/s00500-002-0230-6Regulwar, D. G., & Gurav, J. B. (2012). Sustainable Irrigation Planning with Imprecise Parameters under Fuzzy Environment. Water Resources Management, 26(13), 3871-3892. doi:10.1007/s11269-012-0109-yMula, J., Poler, R., & Garcia-Sabater, J. P. (2008). Capacity and material requirement planning modelling by comparing deterministic and fuzzy models. International Journal of Production Research, 46(20), 5589-5606. doi:10.1080/00207540701413912Díaz-Madroñero, M., Mula, J., Jiménez, M., & Peidro, D. (2016). A rolling horizon approach for material requirement planning under fuzzy lead times. International Journal of Production Research, 55(8), 2197-2211. doi:10.1080/00207543.2016.1223382Mula, J., Poler, R., & Garcia, J. P. (2006). MRP with flexible constraints: A fuzzy mathematical programming approach. Fuzzy Sets and Systems, 157(1), 74-97. doi:10.1016/j.fss.2005.05.045Mula, J., Poler, R., & Garcia-Sabater, J. P. (2007). Material Requirement Planning with fuzzy constraints and fuzzy coefficients. Fuzzy Sets and Systems, 158(7), 783-793. doi:10.1016/j.fss.2006.11.003Díaz-Madroñero, M., Mula, J., & Jiménez, M. (2014). Fuzzy goal programming for material requirements planning under uncertainty and integrity conditions. International Journal of Production Research, 52(23), 6971-6988. doi:10.1080/00207543.2014.920115Pérez-Sánchez, M., Díaz-Madroñero, M., Díaz-Madroñero, D.-M., … Josefa, J. (2017). Mathematical Programming Model for Procurement Selection in Water Irrigation Systems. A Case Study. Journal of Engineering Science and Technology Review, 10(6), 154-162. doi:10.25103/jestr.106.19Herrera, F., & Verdegay, J. L. (1995). Three models of fuzzy integer linear programming. European Journal of Operational Research, 83(3), 581-593. doi:10.1016/0377-2217(93)e0338-xHerrera, F., & Verdegay, J. L. (1996). Fuzzy boolean programming problems with fuzzy costs: A general study. Fuzzy Sets and Systems, 81(1), 57-76. doi:10.1016/0165-0114(94)00324-6Alavidoost, M. H., Babazadeh, H., & Sayyari, S. T. (2016). An interactive fuzzy programming approach for bi-objective straight and U-shaped assembly line balancing problem. Applied Soft Computing, 40, 221-235. doi:10.1016/j.asoc.2015.11.025Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems, 159(2), 193-214. doi:10.1016/j.fss.2007.08.010Yager, R. R. (1981). A procedure for ordering fuzzy subsets of the unit interval. Information Sciences, 24(2), 143-161. doi:10.1016/0020-0255(81)90017-7Lai, Y.-J., & Hwang, C.-L. (1992). A new approach to some possibilistic linear programming problems. Fuzzy Sets and Systems, 49(2), 121-133. doi:10.1016/0165-0114(92)90318-xZimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45-55. doi:10.1016/0165-0114(78)90031-3Selim, H., & Ozkarahan, I. (2006). A supply chain distribution network design model: An interactive fuzzy goal programming-based solution approach. The International Journal of Advanced Manufacturing Technology, 36(3-4), 401-418. doi:10.1007/s00170-006-0842-6Bellman, R. E., & Zadeh, L. A. (1970). Decision-Making in a Fuzzy Environment. Management Science, 17(4), B-141-B-164. doi:10.1287/mnsc.17.4.b14

    Application of fuzzy logic in performance management: a literature review

    Full text link
    [EN] Performance management has become in a key success factor for any organization. Traditionally, performance management has focused uniquely in financial measures, mainly using quantitative measures, but two decades ago they were extended towards an integral view of the organization, appearing qualitative measures. This type of extended view and associated measures have a degree of uncertainty that needs to be bounded. One of the essential tools for uncertainty bounding is the fuzzy logic and, therefore,the main objective of this paper is the analysis of the literature about the application of fuzzy logic in performance measurement systems operating within uncertainty environments with the aim of categorizing, conceptualizing and classifying the works written so far. Finally, three categories are defined according to the different uses of fuzzy logic within performance management concluding that the most important application of fuzzy logic that counts with a higher number of studies is uncertainty bounding.Gurrea Montesinos, V.; Alfaro Saiz, JJ.; Rodríguez Rodríguez, R.; Verdecho Sáez, MJ. (2014). Application of fuzzy logic in performance management: a literature review. International Journal of Production Management and Engineering. 2(2):93-100. doi:10.4995/ijpme.2014.1859SWORD9310022Amini, S., & Jochem, R. (2011). A Conceptual Model Based on the Fuzzy Set Theory to Measure and Evaluate the Performance of Service Processes. 2011 IEEE 15th International Enterprise Distributed Object Computing Conference Workshops. doi:10.1109/edocw.2011.25Ammar, S. & Wright, R. (1995), "A Fuzzy Logic Approach to Performance Evaluation". Uncertainty Modeling and Analysis, 1995, and Annual Conference of the North American Fuzzy Information Processing Society. Proceedings of ISUMA - NAFIPS '95., pp. 246 - 251Ammar, S., & Wright, R. (2000). Applying fuzzy-set theory to performance evaluation. Socio-Economic Planning Sciences, 34(4), 285-302. doi:10.1016/s0038-0121(00)00004-5Arango, M.D., Jaimes, W.A. & Zapata, J.A. (2010) "Gestion cadena de abastecimiento - Logistica con indicadores bajo incertidumbre, caso aplicado sector panificador palmira" Ciencia e Ingeniería Neogranadina, Vol. 20-1, pp. 97-115.Beheshti, H. M., & Lollar, J. G. (2008). Fuzzy logic and performance evaluation: discussion and application. International Journal of Productivity and Performance Management, 57(3), 237-246. doi:10.1108/17410400810857248Behrouzi, F., & Wong, K. Y. (2011). Lean performance evaluation of manufacturing systems: A dynamic and innovative approach. Procedia Computer Science, 3, 388-395. doi:10.1016/j.procs.2010.12.065Chan, T.S., Ql, H.J. (2003), "An innovative performance measurement method for supply chain management". Sup-ply Chain Management: An International Journal Volume 8 Number 3, pp. 209-223.Chan, F. T. S., Qi, H. J., Chan, H. K., Lau, H. C. W., & Ip, R. W. L. (2003). A conceptual model of performance measurement for supply chains. Management Decision, 41(7), 635-642. doi:10.1108/00251740310495568Chen, C.-T., Lin, C.-T., & Huang, S.-F. (2006). A fuzzy approach for supplier evaluation and selection in supply chain management. International Journal of Production Economics, 102(2), 289-301. doi:10.1016/j.ijpe.2005.03.009Cheng, S., Hsu, B., & Shu, M. (2007). Fuzzy testing and selecting better processes performance. Industrial Management & Data Systems, 107(6), 862-881. doi:10.1108/02635570710758761Ferreira, A., Azevedo,S. &Fazendeiro, P. (2012) "A Linguistic Approach to Supply Chain Performance Assessment". IEEE International Conference on Fuzzy Sistems, pp.1-5.Lau, H. C. W., Kai Pang, W., & Wong, C. W. Y. (2002). Methodology for monitoring supply chain performance: a fuzzy logic approach. Logistics Information Management, 15(4), 271-280. doi:10.1108/09576050210436110Lalmazloumian M. & Yew K., (2012), "A Review of Modelling Approaches for Supply Chain Planning Under Un-certainty". 9th International Conference on Service Systems and Service Management (ICSSSM), pp. 197-203.Liao, M.-Y., & Wu, C.-W. (2010). Evaluating process performance based on the incapability index for measurements with uncertainty. Expert Systems with Applications, 37(8), 5999-6006. doi:10.1016/j.eswa.2010.02.005Lu, C. & Wei li, X. (2006), "Supply Chain Modeling Using Fuzzy Sets and Possibility Theory in an Uncertain Envi-ronment". The Sixth World Congress on Intelligent Control and Automation, Vol.2, pp. 3608-3612.Mahnam, M., Yadollahpour, M. R., Famil-Dardashti, V., & Hejazi, S. R. (2009). Supply chain modeling in uncertain environment with bi-objective approach. Computers & Industrial Engineering, 56(4), 1535-1544. doi:10.1016/j.cie.2008.09.038Muñoz, M. J., Rivera, J. M., & Moneva, J. M. (2008). Evaluating sustainability in organisations with a fuzzy logic approach. Industrial Management & Data Systems, 108(6), 829-841. doi:10.1108/02635570810884030Olugu, E. U., & Wong, K. Y. (2012). An expert fuzzy rule-based system for closed-loop supply chain performance assessment in the automotive industry. Expert Systems with Applications, 39(1), 375-384. doi:10.1016/j.eswa.2011.07.026Tabrizi, B. H., & Razmi, J. (2013). Introducing a mixed-integer non-linear fuzzy model for risk management in designing supply chain networks. Journal of Manufacturing Systems, 32(2), 295-307. doi:10.1016/j.jmsy.2012.12.001Theeranuphattana, A., & Tang, J. C. S. (2007). A conceptual model of performance measurement for supply chains. Journal of Manufacturing Technology Management, 19(1), 125-148. doi:10.1108/17410380810843480Unahabhokha, C., Platts, K., & Hua Tan, K. (2007). Predictive performance measurement system. Benchmarking: An International Journal, 14(1), 77-91. doi:10.1108/14635770710730946Van der Vorst, J. G. A. J., & Beulens, A. J. M. (2002). Identifying sources of uncertainty to generate supply chain redesign strategies. International Journal of Physical Distribution & Logistics Management, 32(6), 409-430. doi:10.1108/09600030210437951Wei, C., Liou, T., & Lee, K. (2008). An ERP performance measurement framework using a fuzzy integral approach. Journal of Manufacturing Technology Management, 19(5), 607-626. doi:10.1108/17410380810877285Xu Xiao Xia, L., Ma, B. & Lim, R. (2008) "Supplier Performance Measurement in a Supply Chain". 6th IEEE Inter-national Conference on Industrial Informatics, pp. 877-881

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    A survey on gain-scheduled control and filtering for parameter-varying systems

    Get PDF
    Copyright © 2014 Guoliang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This paper presents an overview of the recent developments in the gain-scheduled control and filtering problems for the parameter-varying systems. First of all, we recall several important algorithms suitable for gain-scheduling method including gain-scheduled proportional-integral derivative (PID) control, H 2, H ∞ and mixed H 2 / H ∞ gain-scheduling methods as well as fuzzy gain-scheduling techniques. Secondly, various important parameter-varying system models are reviewed, for which gain-scheduled control and filtering issues are usually dealt with. In particular, in view of the randomly occurring phenomena with time-varying probability distributions, some results of our recent work based on the probability-dependent gain-scheduling methods are reviewed. Furthermore, some latest progress in this area is discussed. Finally, conclusions are drawn and several potential future research directions are outlined.The National Natural Science Foundation of China under Grants 61074016, 61374039, 61304010, and 61329301; the Natural Science Foundation of Jiangsu Province of China under Grant BK20130766; the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; the Program for New Century Excellent Talents in University under Grant NCET-11-1051, the Leverhulme Trust of the U.K., the Alexander von Humboldt Foundation of Germany

    A Soft Computing Approach to Dynamic Load Balancing in 3GPP LTE

    Get PDF
    A major objective of the 3GPP LTE standard is the provision of high-speed data services. These services must be guaranteed under varying radio propagation conditions, to stochastically distributed mobile users. A necessity for determining and regulating the traffic load of eNodeBs naturally ensues. Load balancing is a self-optimization operation of self-organizing networks (SON). It aims at ensuring an equitable distribution of users in the network. This translates into better user satisfaction and a more efficient use of network resources. Several methods for load balancing have been proposed. Most of the algorithms are based on hard (traditional) computing which does not utilize the tolerance for precision of load balancing. This paper proposes the use of soft computing, precisely adaptive Neuro-fuzzy inference system (ANFIS) model for dynamic QoS aware load balancing in 3GPP LTE. The use of ANFIS offers learning capability of neural network and knowledge representation of fuzzy logic for a load balancing solution that is cost effective and closer to human intuitio
    • …
    corecore