730 research outputs found

    Privacy Preserving Multi-Server k-means Computation over Horizontally Partitioned Data

    Full text link
    The k-means clustering is one of the most popular clustering algorithms in data mining. Recently a lot of research has been concentrated on the algorithm when the dataset is divided into multiple parties or when the dataset is too large to be handled by the data owner. In the latter case, usually some servers are hired to perform the task of clustering. The dataset is divided by the data owner among the servers who together perform the k-means and return the cluster labels to the owner. The major challenge in this method is to prevent the servers from gaining substantial information about the actual data of the owner. Several algorithms have been designed in the past that provide cryptographic solutions to perform privacy preserving k-means. We provide a new method to perform k-means over a large set using multiple servers. Our technique avoids heavy cryptographic computations and instead we use a simple randomization technique to preserve the privacy of the data. The k-means computed has exactly the same efficiency and accuracy as the k-means computed over the original dataset without any randomization. We argue that our algorithm is secure against honest but curious and passive adversary.Comment: 19 pages, 4 tables. International Conference on Information Systems Security. Springer, Cham, 201

    Quantification of De-anonymization Risks in Social Networks

    Full text link
    The risks of publishing privacy-sensitive data have received considerable attention recently. Several de-anonymization attacks have been proposed to re-identify individuals even if data anonymization techniques were applied. However, there is no theoretical quantification for relating the data utility that is preserved by the anonymization techniques and the data vulnerability against de-anonymization attacks. In this paper, we theoretically analyze the de-anonymization attacks and provide conditions on the utility of the anonymized data (denoted by anonymized utility) to achieve successful de-anonymization. To the best of our knowledge, this is the first work on quantifying the relationships between anonymized utility and de-anonymization capability. Unlike previous work, our quantification analysis requires no assumptions about the graph model, thus providing a general theoretical guide for developing practical de-anonymization/anonymization techniques. Furthermore, we evaluate state-of-the-art de-anonymization attacks on a real-world Facebook dataset to show the limitations of previous work. By comparing these experimental results and the theoretically achievable de-anonymization capability derived in our analysis, we further demonstrate the ineffectiveness of previous de-anonymization attacks and the potential of more powerful de-anonymization attacks in the future.Comment: Published in International Conference on Information Systems Security and Privacy, 201

    Identifying Personal Data Processing for Code Review

    Full text link
    Code review is a critical step in the software development life cycle, which assesses and boosts the code's effectiveness and correctness, pinpoints security issues, and raises its quality by adhering to best practices. Due to the increased need for personal data protection motivated by legislation, code reviewers need to understand where personal data is located in software systems and how it is handled. Although most recent work on code review focuses on security vulnerabilities, privacy-related techniques are not easy for code reviewers to implement, making their inclusion in the code review process challenging. In this paper, we present ongoing work on a new approach to identifying personal data processing, enabling developers and code reviewers in drafting privacy analyses and complying with regulations such as the General Data Protection Regulation (GDPR).Comment: Accepted by The 9th International Conference on Information Systems Security and Privacy (ICISSP 2023

    An Overview of Cryptographic Accumulators

    Get PDF
    This paper is a primer on cryptographic accumulators and how to apply them practically. A cryptographic accumulator is a space- and time-efficient data structure used for set-membership tests. Since it is possible to represent any computational problem where the answer is yes or no as a set-membership problem, cryptographic accumulators are invaluable data structures in computer science and engineering. But, to the best of our knowledge, there is neither a concise survey comparing and contrasting various types of accumulators nor a guide for how to apply the most appropriate one for a given application. Therefore, we address that gap by describing cryptographic accumulators while presenting their fundamental and so-called optional properties. We discuss the effects of each property on the given accumulator's performance in terms of space and time complexity, as well as communication overhead.Comment: Note: This is an extended version of a paper published In Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pages 661-66

    Conceptualising an Anti-Digital Forensics Kill Chain for Smart Homes

    Full text link
    The widespread integration of Internet of Things (IoT) devices in households generates extensive digital footprints, notably within Smart Home ecosystems. These IoT devices, brimming with data about residents, inadvertently offer insights into human activities, potentially embodying even criminal acts, such as a murder. As technology advances, so does the concern for criminals seeking to exploit various techniques to conceal evidence and evade investigations. This paper delineates the application of Anti-Digital Forensics (ADF) in Smart Home scenarios and recognises its potential to disrupt (digital) investigations. It does so by elucidating the current challenges and gaps and by arguing, in response, the conceptualisation of an ADF Kill Chain tailored to Smart Home ecosystems. While seemingly arming criminals, the Kill Chain will allow a better understanding of the distinctive peculiarities of Anti-Digital Forensics in Smart Home scenario. This understanding is essential for fortifying the Digital Forensics process and, in turn, developing robust countermeasures against malicious activities.Comment: Accepted in 10th International Conference on Information Systems Security and Privacy (ICISSP 2024
    corecore