5,616 research outputs found

    A study of turbulence and interacting inertial modes in a differentially-rotating spherical shell experiment

    Full text link
    We present a study of inertial modes in a differentially rotating spherical shell (spherical Couette flow) experiment with a radius ratio of η=1/3\eta = 1/3. Inertial modes are Coriolis-restored linear wave modes which often arise in rapidly rotating fluids. Recent experimental work has shown that inertial modes exist in a spherical Couette flow for Ωi<Ωo\Omega_{i}<\Omega_{o}, where Ωi\Omega_i and Ωo\Omega_o is the inner and outer sphere rotation rate. A finite number of particular inertial modes has previously been found. By scanning the Rossby number from 2.5<Ro=(ΩiΩo)/Ωo<0-2.5 < Ro = (\Omega_{i}-\Omega_{o})/\Omega_{o} < 0 at two fixed Ωo\Omega_{o}, we report the existence of similar inertial modes. However, the behavior of the flow described here differs much from previous spherical Couette experiments. We show that the kinetic energy of the dominant inertial mode dramatically increases with decreasing Rossby number that eventually leads to a wave-breaking and an increase of small-scale structures at a critical Rossby number. Such a transition in a spherical Couette flow has not been described before. The critical Rossby number scales with the Ekman number as0 E1/5E^{1/5}. Additionally, the increase of small-scale features beyond the transition transfers energy to a massively enhanced mean flow around the tangent cylinder. In this context, we discuss an interaction between the dominant inertial modes with a geostrophic Rossby mode exciting secondary modes whose frequencies match the triadic resonance condition

    Reversal and amplification of zonal flows by boundary enforced thermal wind

    Full text link
    Zonal flows in rapidly-rotating celestial objects such as the Sun, gas or ice giants form in a variety of surface patterns and amplitudes. Whereas the differential rotation on the Sun, Jupiter and Saturn features a super-rotating equatorial region, the ice giants, Neptune and Uranus harbour an equatorial jet slower than the planetary rotation. Global numerical models covering the optically thick, deep-reaching and rapidly rotating convective envelopes of gas giants reproduce successfully the prograde jet at the equator. In such models, convective columns shaped by the dominant Coriolis force typically exhibit a consistent prograde tilt. Hence angular momentum is pumped away from the rotation axis via Reynolds stresses. Those models are found to be strongly geostrophic, hence a modulation of the zonal flow structure along the axis of rotation, e.g. introduced by persistent latitudinal temperature gradients, seems of minor importance. Within our study we stimulate these thermal gradients and the resulting ageostrophic flows by applying an axisymmetric and equatorially symmetric outer boundary heat flux anomaly (Y20Y_{20}) with variable amplitude and sign. Such a forcing pattern mimics the thermal effect of intense solar or stellar irradiation. Our results suggest that the ageostrophic flows are linearly amplified with the forcing amplitude qq^\star leading to a more pronounced dimple of the equatorial jet (alike Jupiter). The geostrophic flow contributions, however, are suppressed for weak qq^\star, but inverted and re-amplified once qq^\star exceeds a critical value. The inverse geostrophic differential rotation is consistently maintained by now also inversely tilted columns and reminiscent of zonal flow profiles observed for the ice giants. Analysis of the main force balance and parameter studies further foster these results

    Nonstationary Synchronization of Equatorial QBO with SAO in Observations and a Model

    Get PDF
    It has often been suggested that the period of the quasi-biennial oscillation (QBO) has a tendency to synchronize with the semiannual oscillation (SAO). Apparently the synchronization is better the higher up the observation extends. Using 45 yr of the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data of the equatorial stratosphere up to the stratopause, the authors confirm that this synchronization is not just a tendency but a robust phenomenon in the upper stratosphere. A QBO period starts when a westerly SAO (w-SAO) descends from the stratopause to 7 hPa and initiates the westerly phase of the QBO (w-QBO) below. It ends when another w-SAO, a few SAO periods later, descends again to 7 hPa to initiate the next w-QBO. The fact that it is the westerly but not the easterly SAO (e-SAO) that initiates the QBO is also explained by the general easterly bias of the angular momentum in the equatorial stratosphere so that the e-SAO does not create a zero-wind line, unlike the w-SAO. The currently observed average QBO period of 28 months, which is not an integer multiple of SAO periods, is a result of intermittent jumps of the QBO period from four SAO to five SAO periods. The same behavior is also found in the Two and a Half Dimensional Interactive Isentropic Research (THINAIR) model. It is found that the nonstationary behavior in both the observation and model is caused not by the 11-yr solar-cycle forcing but by the incompatibility of the QBO’s natural period (determined by its wave forcing) and the “quantized” period determined by the SAO. The wave forcing parameter for the QBO period in the current climate probably lies between four SAO and five SAO periods. If the wave forcing for the QBO is tuned so that its natural period is compatible with the SAO period above (e.g., at 24 or 30 months), nonstationary behavior disappears

    A systematic numerical study of the tidal instability in a rotating triaxial ellipsoid

    Full text link
    The full non-linear evolution of the tidal instability is studied numerically in an ellipsoidal fluid domain relevant for planetary cores applications. Our numerical model, based on a finite element method, is first validated by reproducing some known analytical results. This model is then used to address open questions that were up to now inaccessible using theoretical and experimental approaches. Growth rates and mode selection of the instability are systematically studied as a function of the aspect ratio of the ellipsoid and as a function of the inclination of the rotation axis compared to the deformation plane. We also quantify the saturation amplitude of the flow driven by the instability and calculate the viscous dissipation that it causes. This tidal dissipation can be of major importance for some geophysical situations and we thus derive general scaling laws which are applied to typical planetary cores

    Large-scale solar wind flow around Saturn's nonaxisymmetric magnetosphere

    Get PDF
    The interaction between the solar wind and a magnetosphere is fundamental to the dynamics of a planetary system. Here, we address fundamental questions on the large-scale magnetosheath flow around Saturn using a 3D magnetohydrodynamic (MHD) simulation. We find Saturn's polar-flattened magnetosphere to channel ~20% more flow over the poles than around the flanks at the terminator. Further, we decompose the MHD forces responsible for accelerating the magnetosheath plasma to find the plasma pressure gradient as the dominant driver. This is by virtue of a high-beta magnetosheath, and in turn, the high-MA bow shock. Together with long-term magnetosheath data by the Cassini spacecraft, we present evidence of how nonaxisymmetry substantially alters the conditions further downstream at the magnetopause, crucial for understanding solar wind-magnetosphere interactions such as reconnection and shear flow-driven instabilities. We anticipate our results to provide a more accurate insight into the global conditions upstream of Saturn and the outer planets.Comment: Accepted for publication in Journal of Geophysical Journal: Space Physic

    Atmospheric Circulation of Hot Jupiters: A Shallow Three-Dimensional Model

    Full text link
    Remote observing of exoplanetary atmospheres is now possible, offering us access to circulation regimes unlike any of the familiar Solar System cases. Atmospheric circulation models are being developed to study these new regimes but model validations and intercomparisons are needed to establish their consistency and accuracy. To this end, we present a simple Earth-like validation of the pseudo-spectral solver of meteorological equations called IGCM (Intermediate General Circulation Model), based on Newtonian relaxation to a prescribed latitudinal profile of equilibrium temperatures. We then describe a straightforward and idealized model extension to the atmospheric flow on a hot Jupiter with the same IGCM solver. This shallow, three-dimensional hot Jupiter model is based on Newtonian relaxation to a permanent day-night pattern of equilibrium temperatures and the absence of surface drag. The baroclinic regime of the Earth's lower atmosphere is contrasted with the more barotropic regime of the simulated hot Jupiter flow. For plausible conditions at the 0.1-1 bar pressure level on HD 209458b, the simulated flow is characterized by unsteadiness, subsonic wind speeds, a zonally-perturbed superrotating equatorial jet and large scale polar vortices. Violation of the Rayleigh-Kuo inflexion point criterion on the flanks of the accelerating equatorial jet indicates that barotropic (horizontal shear) instabilities may be important dynamical features of the simulated flow. Similarities and differences with previously published simulated hot Jupiter flows are briefly noted.Comment: 31 pages, 9 figures, accepted for publication in ApJ. Version with hi-res figures: http://www.astro.columbia.edu/~kristen/Hires/hotjup.3d.shallow.ps.g

    Subcritical convection of liquid metals in a rotating sphere using a quasi-geostrophic model

    Full text link
    We study nonlinear convection in a rapidly rotating sphere with internal heating for values of the Prandtl number relevant for liquid metals (Pr[102,101]Pr\in[10^{-2},10^{-1}]). We use a numerical model based on the quasi-geostrophic approximation, in which variations of the axial vorticity along the rotation axis are neglected, whereas the temperature field is fully three-dimensional. We identify two separate branches of convection close to onset: (i) a well-known weak branch for Ekman numbers greater than 10610^{-6}, which is continuous at the onset (supercritical bifurcation) and consists of thermal Rossby waves, and (ii) a novel strong branch at lower Ekman numbers, which is discontinuous at the onset. The strong branch becomes subcritical for Ekman numbers of the order of 10810^{-8}. On the strong branch, the Reynolds number of the flow is greater than 10310^3, and a strong zonal flow with multiple jets develops, even close to the nonlinear onset of convection. We find that the subcriticality is amplified by decreasing the Prandtl number. The two branches can co-exist for intermediate Ekman numbers, leading to hysteresis (Ek=106Ek=10^{-6}, Pr=102Pr=10^{-2}). Nonlinear oscillations are observed near the onset of convection for Ek=107Ek=10^{-7} and Pr=101Pr=10^{-1}.Comment: 30 pages, 16 figures, published in JF

    Numerical Simulations of Dynamos Generated in Spherical Couette Flows

    Get PDF
    We numerically investigate the efficiency of a spherical Couette flow at generating a self-sustained magnetic field. No dynamo action occurs for axisymmetric flow while we always found a dynamo when non-axisymmetric hydrodynamical instabilities are excited. Without rotation of the outer sphere, typical critical magnetic Reynolds numbers RmcRm_c are of the order of a few thousands. They increase as the mechanical forcing imposed by the inner core on the flow increases (Reynolds number ReRe). Namely, no dynamo is found if the magnetic Prandtl number Pm=Rm/RePm=Rm/Re is less than a critical value Pmc1Pm_c\sim 1. Oscillating quadrupolar dynamos are present in the vicinity of the dynamo onset. Saturated magnetic fields obtained in supercritical regimes (either Re>2RecRe>2 Re_c or Pm>2PmcPm>2Pm_c) correspond to the equipartition between magnetic and kinetic energies. A global rotation of the system (Ekman numbers E=103,104E=10^{-3}, 10^{-4}) yields to a slight decrease (factor 2) of the critical magnetic Prandtl number, but we find a peculiar regime where dynamo action may be obtained for relatively low magnetic Reynolds numbers (Rmc300Rm_c\sim 300). In this dynamical regime (Rossby number Ro1Ro\sim -1, spheres in opposite direction) at a moderate Ekman number (E=103E=10^{-3}), a enhanced shear layer around the inner core might explain the decrease of the dynamo threshold. For lower EE (E=104E=10^{-4}) this internal shear layer becomes unstable, leading to small scales fluctuations, and the favorable dynamo regime is lost. We also model the effect of ferromagnetic boundary conditions. Their presence have only a small impact on the dynamo onset but clearly enhance the saturated magnetic field in the ferromagnetic parts. Implications for experimental studies are discussed

    A dispersive wave pattern on Jupiter's fastest retrograde jet at 2020^\circS

    Full text link
    A compact wave pattern has been identified on Jupiter's fastest retrograding jet at 20S (the SEBs) on the southern edge of the South Equatorial Belt. The wave has been identified in both reflected sunlight from amateur observations between 2010 and 2015, thermal infrared imaging from the Very Large Telescope and near infrared imaging from the Infrared Telescope Facility. The wave pattern is present when the SEB is relatively quiescent and lacking large-scale disturbances, and is particularly notable when the belt has undergone a fade (whitening). It is generally not present when the SEB exhibits its usual large-scale convective activity ('rifts'). Tracking of the wave pattern and associated white ovals on its southern edge over several epochs have permitted a measure of the dispersion relationship, showing a strong correlation between the phase speed (-43.2 to -21.2 m/s) and the longitudinal wavelength, which varied from 4.4-10.0 deg. longitude over the course of the observations. Infrared imaging sensing low pressures in the upper troposphere suggest that the wave is confined to near the cloud tops. The wave is moving westward at a phase speed slower (i.e., less negative) than the peak retrograde wind speed (-62 m/s), and is therefore moving east with respect to the SEBs jet peak. Unlike the retrograde NEBn jet near 17N, which is a location of strong vertical wind shear that sometimes hosts Rossby wave activity, the SEBs jet remains retrograde throughout the upper troposphere, suggesting the SEBs pattern cannot be interpreted as a classical Rossby wave. Cassini-derived windspeeds and temperatures reveal that the vorticity gradient is dominated by the baroclinic term and becomes negative (changes sign) in a region near the cloud-top level (400-700 mbar) associated with the SEBs, suggesting a baroclinic origin for this meandering wave pattern. [Abr]Comment: 19 pages, 11 figures, article accepted for publication in Icaru
    corecore