15,236 research outputs found
Brain asymmetry and visual word recognition: do we have a split fovea?
In this chapter we discuss how the anatomical divide between the left and the right brain half has implications for visual word recognition. In particular, it introduces the need for massive interhemispheric communication. Unlike what was believed in the traditional view, it looks increasingly likely that interhemispheric integration is already needed from the very first stages of word processing, when the letter information is combined to activate stored word representations. Taking into account these insights not only improves our understanding of the neurophysiological and cognitive mechanisms of reading, it also gives us new ideas to look at individual differences in reading
Interhemispheric transfer and the processing of foveally presented stimuli
A review of the literature shows that the LVF and the RVF do not overlap. This means that foveal representations of words are effectively split and that interhemispheric communication is needed to recognise centrally presented words
The Role of Corpus Callosum Development in Functional Connectivity and Cognitive Processing
The corpus callosum is hypothesized to play a fundamental role in integrating information and mediating complex behaviors. Here, we demonstrate that lack of normal callosal development can lead to deficits in functional connectivity that are related to impairments in specific cognitive domains. We examined resting-state functional connectivity in individuals with agenesis of the corpus callosum (AgCC) and matched controls using magnetoencephalographic imaging (MEG-I) of coherence in the alpha (8–12 Hz), beta (12–30 Hz) and gamma (30–55 Hz) bands. Global connectivity (GC) was defined as synchronization between a region and the rest of the brain. In AgCC individuals, alpha band GC was significantly reduced in the dorsolateral pre-frontal (DLPFC), posterior parietal (PPC) and parieto-occipital cortices (PO). No significant differences in GC were seen in either the beta or gamma bands. We also explored the hypothesis that, in AgCC, this regional reduction in functional connectivity is explained primarily by a specific reduction in interhemispheric connectivity. However, our data suggest that reduced connectivity in these regions is driven by faulty coupling in both inter- and intrahemispheric connectivity. We also assessed whether the degree of connectivity correlated with behavioral performance, focusing on cognitive measures known to be impaired in AgCC individuals. Neuropsychological measures of verbal processing speed were significantly correlated with resting-state functional connectivity of the left medial and superior temporal lobe in AgCC participants. Connectivity of DLPFC correlated strongly with performance on the Tower of London in the AgCC cohort. These findings indicate that the abnormal callosal development produces salient but selective (alpha band only) resting-state functional connectivity disruptions that correlate with cognitive impairment. Understanding the relationship between impoverished functional connectivity and cognition is a key step in identifying the neural mechanisms of language and executive dysfunction in common neurodevelopmental and psychiatric disorders where disruptions of callosal development are consistently identified
Multiscale Topological Properties Of Functional Brain Networks During Motor Imagery After Stroke
In recent years, network analyses have been used to evaluate brain
reorganization following stroke. However, many studies have often focused on
single topological scales, leading to an incomplete model of how focal brain
lesions affect multiple network properties simultaneously and how changes on
smaller scales influence those on larger scales. In an EEG-based experiment on
the performance of hand motor imagery (MI) in 20 patients with unilateral
stroke, we observed that the anatomic lesion affects the functional brain
network on multiple levels. In the beta (13-30 Hz) frequency band, the MI of
the affected hand (Ahand) elicited a significantly lower smallworldness and
local efficiency (Eloc) versus the unaffected hand (Uhand). Notably, the
abnormal reduction in Eloc significantly depended on the increase in
interhemispheric connectivity, which was in turn determined primarily by the
rise in regional connectivity in the parieto-occipital sites of the affected
hemisphere. Further, in contrast to the Uhand MI, in which significantly high
connectivity was observed for the contralateral sensorimotor regions of the
unaffected hemisphere, the regions that increased in connection during the
Ahand MI lay in the frontal and parietal regions of the contralaterally
affected hemisphere. Finally, the overall sensorimotor function of our
patients, as measured by Fugl-Meyer Assessment (FMA) index, was significantly
predicted by the connectivity of their affected hemisphere. These results
increase our understanding of stroke-induced alterations in functional brain
networks.Comment: Neuroimage, accepted manuscript (unedited version) available online
19-June-201
On the role of the corpus callosum in interhemispheric functional connectivity in humans
Resting state functional connectivity is defined in terms of temporal correlations between physiologic signals, most commonly studied using functional magnetic resonance imaging. Major features of functional connectivity correspond to structural (axonal) connectivity. However, this relation is not one-to-one. Interhemispheric functional connectivity in relation to the corpus callosum presents a case in point. Specifically, several reports have documented nearly intact interhemispheric functional connectivity in individuals in whom the corpus callosum (the major commissure between the hemispheres) never develops. To investigate this question, we assessed functional connectivity before and after surgical section of the corpus callosum in 22 patients with medically refractory epilepsy. Section of the corpus callosum markedly reduced interhemispheric functional connectivity. This effect was more profound in multimodal associative areas in the frontal and parietal lobe than primary regions of sensorimotor and visual function. Moreover, no evidence of recovery was observed in a limited sample in which multiyear, longitudinal follow-up was obtained. Comparison of partial vs. complete callosotomy revealed several effects implying the existence of polysynaptic functional connectivity between remote brain regions. Thus, our results demonstrate that callosal as well as extracallosal anatomical connections play a role in the maintenance of interhemispheric functional connectivity
Recommended from our members
Functional Brain Hyperactivations Are Linked to an Electrophysiological Measure of Slow Interhemispheric Transfer Time after Pediatric Moderate/Severe Traumatic Brain Injury.
Increased task-related blood oxygen level dependent (BOLD) activation is commonly observed in functional magnetic resonance imaging (fMRI) studies of moderate/severe traumatic brain injury (msTBI), but the functional relevance of these hyperactivations and how they are linked to more direct measures of neuronal function remain largely unknown. Here, we investigated how working memory load (WML)-dependent BOLD activation was related to an electrophysiological measure of interhemispheric transfer time (IHTT) in a sample of 18 msTBI patients and 26 demographically matched controls from the UCLA RAPBI (Recovery after Pediatric Brain Injury) study. In the context of highly similar fMRI task performance, a subgroup of TBI patients with slow IHTT had greater BOLD activation with higher WML than both healthy control children and a subgroup of msTBI patients with normal IHTT. Slower IHTT treated as a continuous variable was also associated with BOLD hyperactivation in the full TBI sample and in controls. Higher WML-dependent BOLD activation was related to better performance on a clinical cognitive performance index, an association that was more pronounced within the patient group with slow IHTT. Our previous work has shown that a subgroup of children with slow IHTT after pediatric msTBI has increased risk for poor white matter organization, long-term neurodegeneration, and poor cognitive outcome. BOLD hyperactivations after msTBI may reflect neuronal compensatory processes supporting higher-order capacity demanding cognitive functions in the context of inefficient neuronal transfer of information. The link between BOLD hyperactivations and slow IHTT adds to the multi-modal validation of this electrophysiological measure as a promising biomarker
How does interhemispheric communication in visual word recognition work? Deciding between early and late integration accounts of the split fovea theory
Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation
Ischemic damage to the brain triggers substantial reorganization of spared areas and pathways, which is associated with limited, spontaneous restoration of function. A better understanding of this plastic remodeling is crucial to develop more effective strategies for stroke rehabilitation. In this review article, we discuss advances in the comprehension of post-stroke network reorganization in patients and animal models. We first focus on rodent studies that have shed light on the mechanisms underlying neuronal remodeling in the perilesional area and contralesional hemisphere after motor cortex infarcts. Analysis of electrophysiological data has demonstrated brain-wide alterations in functional connectivity in both hemispheres, well beyond the infarcted area. We then illustrate the potential use of non-invasive brain stimulation (NIBS) techniques to boost recovery. We finally discuss rehabilitative protocols based on robotic devices as a tool to promote endogenous plasticity and functional restoration
Description of interhemispheric disconnection syndrome in a patient with Marchiafava-Bignami disease
Interhemispheric disconnection syndrome (IDS), described by Sperry, Gazzaniga and Bogen, is characterized by the presence of visual and tactile anomia, absence of interhemispheric transference of unilateral somatosensory stimulation of both hands, hemialexia and unilateral left-side apraxia. Subsequently, changes were also observed in the sensory interhemispheric transfer and in tests of crossed motor control. In Marchiafava-Bignami disease (MBD) there have been descriptions of partial IDS. The aim is to describe the dissociations in IDS that are presented in a patient with MBD, using a specialized assessment methodology. Patient and Method: A 54-year-old patient, righthanded, with 11 years of schooling, presented with antecedent chronic alcoholism. Neuropsychological tests were administered for general assessment along with specific tests of interhemispheric transference. Results: Borderline changes were found in visual memory, visual-constructive abilities and attention and executive functioning. In tasks of interhemispheric transference the patient showed changes in: the imitation of hand poses; inter-manual pressure point localization (tactile stimulation); reading aloud of words by visual hemifield; and movement control. Conclusion: Our patient showed a wide lesion of the Corpus Callosum (CC) with relative preservation of the splenium, accompanied by partial disconnection syndrome in the context of a global cognitive deterioration from his chronic alcoholism.Fil: Politis, Daniel Gustavo. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tirigay, Romina Mara. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; ArgentinaFil: Gómez, Pablo Guillermo. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tabernero, María Eugenia. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Age and interhemispheric transfer time: A failure to replicate.
In a recent study with the Poffenberger paradigm, Brizzolara et al. reported longer estimates of interhemispheric transfer time (IHTT) for children aged 7 years than for adults. They interpreted this finding as evidence for incomplete functional maturity of the corpus callosum in young children. The present study was we were unable to replicate the age effect reported by Brizzolara et al. A closer look at the original study revealed that only 80 observations per child had been collected, which makes it probable that the larger IHTTs in 7-year-olds were caused by stimulus-response compatibility rather than by the lower efficiency of the corpus callosum during childhood years
- …
