4 research outputs found

    Energy Efficient Small Cell Planning For High Capacity Wireless Networks

    Get PDF
    This thesis presents a new strategy to densify Small Cells (i.e., add more low powered base stations within macro networks) and enhance the coverage and capacity of Heterogeneous Networks. This is accomplished by designing Micro Cell for outdoor applications, Pico and Femtocell for indoor applications. It is shown that, there exists a free space propagation medium in all propagation environments due to Fresnel zones, and the path loss slope within this zone is similar to free space propagation medium. This forms the basis of our development of the present work. The salient feature of the proposed work has two main considerations (a) The cell radius of Small Cells must be within the first Fresnel zone break point, and (b) The minimum inter-cell distance must be greater than twice of Small Cell radius. The proposed network is simulated in real a radio network simulator called ATOLL. The simulation results showed that densify Small Cells not only enhanced the capacity and coverage of Heterogeneous Networks but also improved the carrier to interference ratio significantly. Since the proposed work allows UE (user equipment) to have Line of Sight (LOS) communication with the serving cell, and UE can have higher uplink (UL) signal to interference plus noise ratio (SINR) that will further allow UE to reduce its transmission power, which will consequently lead to a longer battery life for the UE and reduce the interference in the system

    User Association and Enabling Technologies in Next Generation 5G Ultra-Dense Networks – A Review

    Get PDF
    Embedding small cells and relay nodes in a macro-cellular network is a promising method for achieving substantial gains in coverage and capacity compared to traditional macro only networks. These new types of base-stations can operate on the same wireless channel as the macro-cellular network, providing higher spatial reuse via cell splitting. However, these base-stations are deployed in an unplanned manner, can have very different transmit powers, and may not have traffic aggregation among many users. This could potentially result in much higher interference magnitude and variability. Hence, such deployments require the use of innovative cell association and inter-cell interference coordination techniques in order to realize the promised capacity and coverage gains. In this paper, we review various techniques for user association and interference mitigation which are required to meet increased data demand in next generation 5G ultra-dense networ

    On the Feasibility of Full-Duplex Relaying in Multiple-Antenna Cellular Networks

    Full text link

    Interference-Based Cell Selection in Heterogenous Networks

    No full text
    Abstract—Heterogeneous cellular networks provide significant improvements in terms of increased data rates and cell coverage, and offer reduced user rate starvation. However, there are important problems to be solved. In this paper, we identify that the cell selection criterion is an important factor determining the user rates especially in the uplink transmissions and apply cell breathing to determine the user and base station assignments. We observe that the proposed interference-based cell selection algorithm provides better load balancing among the base stations in the system to improve the uplink user rates. We present the implementation steps in a typical LTE network and demonstrate the performance improvements through simulations. I
    corecore