6,872 research outputs found

    MARVELO: Wireless Virtual Network Embedding for Overlay Graphs with Loops

    Full text link
    When deploying resource-intensive signal processing applications in wireless sensor or mesh networks, distributing processing blocks over multiple nodes becomes promising. Such distributed applications need to solve the placement problem (which block to run on which node), the routing problem (which link between blocks to map on which path between nodes), and the scheduling problem (which transmission is active when). We investigate a variant where the application graph may contain feedback loops and we exploit wireless networks? inherent multicast advantage. Thus, we propose Multicast-Aware Routing for Virtual network Embedding with Loops in Overlays (MARVELO) to find efficient solutions for scheduling and routing under a detailed interference model. We cast this as a mixed integer quadratically constrained optimisation problem and provide an efficient heuristic. Simulations show that our approach handles complex scenarios quickly.Comment: 6 page

    Coefficient of Restitution based Cross Layer Interference Aware Routing Protocol in Wireless Mesh Networks

    Get PDF
    In Multi-Radio Multi-Channel (MRMC) Wireless Mesh Networks (WMN), Partially Overlapped Channels (POC) has been used to increase the parallel transmission. But adjacent channel interference is very severe in MRMC environment; it decreases the network throughput very badly. In this paper, we propose a Coefficient of Restitution based cross layer interference aware routing protocol (CoRCiaR) to improve TCP performance in Wireless Mesh Networks. This approach comprises of two-steps: Initially, the interference detection algorithm is developed at MAC layer by enhancing the RTS/CTS method. Based on the channel interference, congestion is identified by Round Trip Time (RTT) measurements, and subsequently the route discovery module selects the alternative path to send the data packet. The packets are transmitted to the congestion free path seamlessly by the source. The performance of the proposed CoRCiaR protocol is measured by Coefficient of Restitution (COR) parameter. The impact of the rerouting is experienced on the network throughput performance. The simulation results show that the proposed cross layer interference aware dynamic routing enhances the TCP performance on WMN

    Interference-Aware Routing in Wireless Mesh Networks

    Get PDF
    User demand for seamless connectivity has encouraged the development of alternatives to traditional communications infrastructure networks. Potential solutions have to be low-cost, easily deployable and adaptive to the environment. One approach that has gained tremendous attention over the past few years is the deployment of a backbone of access points wirelessly interconnected, allowing users to access the wired infrastructure via wireless multi-hop communication. Wireless Mesh Networks (WMN) fall into this category and constitute a technology that could revolutionize the way wireless network access is provided. However, limited transfer capacity and interference resulting from the shared nature of the transmission medium will prevent widespread deployment if the network performance does not meet users' expectations. It is therefore imperative to provide efficient mechanisms for such networks. Resource management encompasses a number of different issues, including routing. Although a profusion of routing mechanisms have been proposed for other wireless technologies, the unique characteristics of WMNs (i.e. fixed wireless backbone, with the possibility to embed multiple interfaces) prevent their straight forward adoption in WMNs. Moreover, the severe performance degradations that can result from the interference generated by concurrent data transmissions and environmental noise call for the development of interference-aware routing mechanisms. In this thesis, we investigated the impact of interference on the network performance of wireless mesh networks. We designed algorithms to associate routers to gateways that minimize the interference level in single-channel and multi-channel networks. We then studied the performance of existing routing metrics and their suitability for mesh networks. As a result of this analysis, we designed a novel routing metric and showed its benefits over existing ones. Finally, we provided an analytical evaluation of the probability of finding two non interfering paths given a network topology

    An Efficient Interference Aware Partially Overlapping Channel Assignment and Routing in Wireless Mesh Networks

    Get PDF
    In recent years, multi-channel multi-radio wireless mesh networks are considered a reliable and cost effective way for internet access in wide area. A major research challenge in this network is, selecting a least interference channel from the available channels, efficiently assigning a radio to the selected channel, and routing packets through the least interference path. Many algorithms and methods have been developed for channel assignment to maximize the network throughput using orthogonal channels. Recent research and test-bed experiments have proved that POC (Partially Overlapped Channels) based channel assignment allows significantly more flexibility in wireless spectrum sharing. In this paper, first we represent the channel assignment as a graph edge coloring problem using POC. The signal-to-noise plus interference ratio is measured to avoid interference from neighbouring transmissions, when a channel is assigned to the link. Second we propose a new routing metric called signal-to-noise plus interference ratio (SINR) value which measures interference in each link and routing algorithm works based on the interference information. The simulation results show that the channel assignment and interference aware routing algorithm, proposed in this paper, improves the network throughput and performance
    • …
    corecore