1,375 research outputs found

    Throughput Scaling of Wireless Networks With Random Connections

    Full text link
    This work studies the throughput scaling laws of ad hoc wireless networks in the limit of a large number of nodes. A random connections model is assumed in which the channel connections between the nodes are drawn independently from a common distribution. Transmitting nodes are subject to an on-off strategy, and receiving nodes employ conventional single-user decoding. The following results are proven: 1) For a class of connection models with finite mean and variance, the throughput scaling is upper-bounded by O(n1/3)O(n^{1/3}) for single-hop schemes, and O(n1/2)O(n^{1/2}) for two-hop (and multihop) schemes. 2) The Θ(n1/2)\Theta (n^{1/2}) throughput scaling is achievable for a specific connection model by a two-hop opportunistic relaying scheme, which employs full, but only local channel state information (CSI) at the receivers, and partial CSI at the transmitters. 3) By relaxing the constraints of finite mean and variance of the connection model, linear throughput scaling Θ(n)\Theta (n) is achievable with Pareto-type fading models.Comment: 13 pages, 4 figures, To appear in IEEE Transactions on Information Theor

    Linear Precoding Designs for Amplify-and-Forward Multiuser Two-Way Relay Systems

    Full text link
    Two-way relaying can improve spectral efficiency in two-user cooperative communications. It also has great potential in multiuser systems. A major problem of designing a multiuser two-way relay system (MU-TWRS) is transceiver or precoding design to suppress co-channel interference. This paper aims to study linear precoding designs for a cellular MU-TWRS where a multi-antenna base station (BS) conducts bi-directional communications with multiple mobile stations (MSs) via a multi-antenna relay station (RS) with amplify-and-forward relay strategy. The design goal is to optimize uplink performance, including total mean-square error (Total-MSE) and sum rate, while maintaining individual signal-to-interference-plus-noise ratio (SINR) requirement for downlink signals. We show that the BS precoding design with the RS precoder fixed can be converted to a standard second order cone programming (SOCP) and the optimal solution is obtained efficiently. The RS precoding design with the BS precoder fixed, on the other hand, is non-convex and we present an iterative algorithm to find a local optimal solution. Then, the joint BS-RS precoding is obtained by solving the BS precoding and the RS precoding alternately. Comprehensive simulation is conducted to demonstrate the effectiveness of the proposed precoding designs.Comment: 13 pages, 12 figures, Accepted by IEEE TW

    Capacity region of the deterministic multi-pair bi-directional relay network

    Get PDF
    In this paper we study the capacity region of the multi-pair bidirectional (or two-way) wireless relay network, in which a relay node facilitates the communication between multiple pairs of users. This network is a generalization of the well known bidirectional relay channel, where we have only one pair of users. We examine this problem in the context of the deterministic channel interaction model, which eliminates the channel noise and allows us to focus on the interaction between signals. We characterize the capacity region of this network when the relay is operating at either full-duplex mode or half-duplex mode (with non adaptive listen-transmit scheduling). In both cases we show that the cut-set upper bound is tight and, quite interestingly, the capacity region is achieved by a simple equation-forwarding strategy.Comment: Will be presented in the 2009 IEEE Information Theory Workshop on Networking and Information Theor

    The Multi-way Relay Channel

    Get PDF
    The multiuser communication channel, in which multiple users exchange information with the help of a relay terminal, termed the multi-way relay channel (mRC), is introduced. In this model, multiple interfering clusters of users communicate simultaneously, where the users within the same cluster wish to exchange messages among themselves. It is assumed that the users cannot receive each other's signals directly, and hence the relay terminal in this model is the enabler of communication. In particular, restricted encoders, which ignore the received channel output and use only the corresponding messages for generating the channel input, are considered. Achievable rate regions and an outer bound are characterized for the Gaussian mRC, and their comparison is presented in terms of exchange rates in a symmetric Gaussian network scenario. It is shown that the compress-and-forward (CF) protocol achieves exchange rates within a constant bit offset of the exchange capacity independent of the power constraints of the terminals in the network. A finite bit gap between the exchange rates achieved by the CF and the amplify-and-forward (AF) protocols is also shown. The two special cases of the mRC, the full data exchange model, in which every user wants to receive messages of all other users, and the pairwise data exchange model which consists of multiple two-way relay channels, are investigated in detail. In particular for the pairwise data exchange model, in addition to the proposed random coding based achievable schemes, a nested lattice coding based scheme is also presented and is shown to achieve exchange rates within a constant bit gap of the exchange capacity.Comment: Revised version of our submission to the Transactions on Information Theor

    A Modified Levenberg-Marquardt Method for the Bidirectional Relay Channel

    Full text link
    This paper presents an optimization approach for a system consisting of multiple bidirectional links over a two-way amplify-and-forward relay. It is desired to improve the fairness of the system. All user pairs exchange information over one relay station with multiple antennas. Due to the joint transmission to all users, the users are subject to mutual interference. A mitigation of the interference can be achieved by max-min fair precoding optimization where the relay is subject to a sum power constraint. The resulting optimization problem is non-convex. This paper proposes a novel iterative and low complexity approach based on a modified Levenberg-Marquardt method to find near optimal solutions. The presented method finds solutions close to the standard convex-solver based relaxation approach.Comment: submitted to IEEE Transactions on Vehicular Technology We corrected small mistakes in the proof of Lemma 2 and Proposition

    Energy-efficiency for MISO-OFDMA based user-relay assisted cellular networks

    Get PDF
    The concept of improving energy-efficiency (EE) without sacrificing the service quality has become important nowadays. The combination of orthogonal frequency-division multiple-access (OFDMA) multi-antenna transmission technology and relaying is one of the key technologies to deliver the promise of reliable and high-data-rate coverage in the most cost-effective manner. In this paper, EE is studied for the downlink multiple-input single-output (MISO)-OFDMA based user-relay assisted cellular networks. EE maximization is formulated for decode and forward (DF) relaying scheme with the consideration of both transmit and circuit power consumption as well as the data rate requirements for the mobile users. The quality of-service (QoS)-constrained EE maximization, which is defined for multi-carrier, multi-user, multi-relay and multi-antenna networks, is a non-convex and combinatorial problem so it is hard to tackle. To solve this difficult problem, a radio resource management (RRM) algorithm that solves the subcarrier allocation, mode selection and power allocation separately is proposed. The efficiency of the proposed algorithm is demonstrated by numerical results for different system parameter
    • …
    corecore