5 research outputs found

    Modified Variational Mode Decomposition for Power Line Interference Removal in ECG Signals

    Get PDF
    Power line interferences (PLI) occurring at 50/60 Hz can corrupt the biomedical recordings like ECG signals and which leads to an improper diagnosis of disease conditions. Proper interference cancellation techniques are therefore required for the removal of these power line disturbances from biomedical recordings. The non-linear time varying characteristics of biomedical signals make the interference removal a difficult task without compromising the actual signal characteristics. In this paper, a modified variational mode decomposition based approach is proposed for PLI removal from the ECG signals. In this approach, the central frequency of an intrinsic mode function is fixed corresponding to the normalized power line disturbance frequency. The experimental results show that the PLI interference is exactly captured both in magnitude and phase and are removed. The proposed approach is experimented with ECG signal records from MIT-BIH Arrhythmia database and compared with traditional notch filtering

    Bidirectional Neural Interface Circuits with On-Chip Stimulation Artifact Reduction Schemes

    Full text link
    Bidirectional neural interfaces are tools designed to “communicate” with the brain via recording and modulation of neuronal activity. The bidirectional interface systems have been adopted for many applications. Neuroscientists employ them to map neuronal circuits through precise stimulation and recording. Medical doctors deploy them as adaptable medical devices which control therapeutic stimulation parameters based on monitoring real-time neural activity. Brain-machine-interface (BMI) researchers use neural interfaces to bypass the nervous system and directly control neuroprosthetics or brain-computer-interface (BCI) spellers. In bidirectional interfaces, the implantable transducers as well as the corresponding electronic circuits and systems face several challenges. A high channel count, low power consumption, and reduced system size are desirable for potential chronic deployment and wider applicability. Moreover, a neural interface designed for robust closed-loop operation requires the mitigation of stimulation artifacts which corrupt the recorded signals. This dissertation introduces several techniques targeting low power consumption, small size, and reduction of stimulation artifacts. These techniques are implemented for extracellular electrophysiological recording and two stimulation modalities: direct current stimulation for closed-loop control of seizure detection/quench and optical stimulation for optogenetic studies. While the two modalities differ in their mechanisms, hardware implementation, and applications, they share many crucial system-level challenges. The first method aims at solving the critical issue of stimulation artifacts saturating the preamplifier in the recording front-end. To prevent saturation, a novel mixed-signal stimulation artifact cancellation circuit is devised to subtract the artifact before amplification and maintain the standard input range of a power-hungry preamplifier. Additional novel techniques have been also implemented to lower the noise and power consumption. A common average referencing (CAR) front-end circuit eliminates the cross-channel common mode noise by averaging and subtracting it in analog domain. A range-adapting SAR ADC saves additional power by eliminating unnecessary conversion cycles when the input signal is small. Measurements of an integrated circuit (IC) prototype demonstrate the attenuation of stimulation artifacts by up to 42 dB and cross-channel noise suppression by up to 39.8 dB. The power consumption per channel is maintained at 330 nW, while the area per channel is only 0.17 mm2. The second system implements a compact headstage for closed-loop optogenetic stimulation and electrophysiological recording. This design targets a miniaturized form factor, high channel count, and high-precision stimulation control suitable for rodent in-vivo optogenetic studies. Monolithically integrated optoelectrodes (which include 12 µLEDs for optical stimulation and 12 electrical recording sites) are combined with an off-the-shelf recording IC and a custom-designed high-precision LED driver. 32 recording and 12 stimulation channels can be individually accessed and controlled on a small headstage with dimensions of 2.16 x 2.38 x 0.35 cm and mass of 1.9 g. A third system prototype improves the optogenetic headstage prototype by furthering system integration and improving power efficiency facilitating wireless operation. The custom application-specific integrated circuit (ASIC) combines recording and stimulation channels with a power management unit, allowing the system to be powered by an ultra-light Li-ion battery. Additionally, the µLED drivers include a high-resolution arbitrary waveform generation mode for shaping of µLED current pulses to preemptively reduce artifacts. A prototype IC occupies 7.66 mm2, consumes 3.04 mW under typical operating conditions, and the optical pulse shaping scheme can attenuate stimulation artifacts by up to 3x with a Gaussian-rise pulse rise time under 1 ms.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147674/1/mendrela_1.pd

    Changes in neuronal firing and synchrony precede recruitment of mesial temporal networks into generalizing seizures

    Get PDF
    Despite extensive study, the mechanisms underlying seizure generation and propagation are poorly understood. One approach is to study changes in the neuronal activity (of inhibitory and excitatory subpopulations) that occur during the recruitment of networks into a propagating seizure, to gain insight into mechanisms by which seizures spread across the brain. Recent work, comparing intra- and extracelluar recordings in ex-vivo preparations of human neocortex has implicated a failure in feed-forward inhibition underlying the spread of seizure. However, direct in-vivo study of inhibitory and excitatory population dynamics in the neocortex is difficult, due to an inability to separate single neuron activity into excitatory and inhibitory subpopulations. In the mesial temporal lobe (MTL) it is considerably easier to isolate these subpopulations, and several studies in the rodent MTL have, indeed, demonstrated an intricate spatiotemporal interplay between inhibitory and excitatory neuron firing and their corresponding synchrony to local field potentials during the transition to seizure. While this work suggests potential mechanisms for network recruitment into seizure, no direct observations have been made in the MTL of epileptic patients. This report provides methods to prolong the longevity of single neuron recordings in the human MTL. Using these recordings, evidence is presented that supports the hypothesis that recruitment of MTL networks into seizures of neocortical origin is preceded by specific spatiotemporal increases in synchrony. In detail, within the MTL there is a decrease in inhibitory interneuron firing that coincides with the inhibitory population becoming more coherent to their local field potentials. This increased synchrony between neurons and the local field occurs at frequencies similar to those of regional synchrony between MTL networks and the seizure focus. These results suggest a mechanism by which downstream networks are prepared for recruitment into generalizing seizures. Interestingly, these spatiotemporal changes occur prior to the first electrographic manifestation of seizure in the brain, implying that in addition to their role in seizure propagation, changes in interneuron firing and interneuron-field synchrony in the MTL may be reflective of early seizure activity in other brain structures as well, and may thus be a useful tool in developing improved early detection algorithms.Ph.D., Biomedical Engineering -- Drexel University, 201

    Interictal Network Dynamics in Paediatric Epilepsy Surgery

    Get PDF
    Epilepsy is an archetypal brain network disorder. Despite two decades of research elucidating network mechanisms of disease and correlating these with outcomes, the clinical management of children with epilepsy does not readily integrate network concepts. For example, network measures are not used in presurgical evaluation to guide decision making or surgical management plans. The aim of this thesis was to investigate novel network frameworks from the perspective of a clinician, with the explicit aim of finding measures that may be clinically useful and translatable to directly benefit patient care. We examined networks at three different scales, namely macro (whole brain diffusion MRI), meso (subnetworks from SEEG recordings) and micro (single unit networks) scales, consistently finding network abnormalities in children being evaluated for or undergoing epilepsy surgery. This work also provides a path to clinical translation, using frameworks such as IDEAL to robustly assess the impact of these new technologies on management and outcomes. The thesis sets up a platform from which promising computational technology, that utilises brain network analyses, can be readily translated to benefit patient care

    Interference and Noise in Human Intracranial Microwire Recordings

    No full text
    corecore