4 research outputs found

    Energy Aware Transmission in Cellular Uplink with Clustered Base Station Cooperation

    Get PDF
    We provide an analytical formula to evaluate the performance of the uplink of planar cellular networks when joint processing is enabled among limited number of base stations in a generalised fading environment. Focusing on user transmission power allocation techniques to mitigate inter-cluster interference we investigate the system's spectral-energy efficiency trade-off. The paper addresses the gains in both cell throughput and transmissions energy efficiency due to the combined strategies of base station cooperation and user power management. We assess the effect of the propagation environment and of the key network design parameters of cooperation cluster size and inter-site distance on the overall performance providing numerical results for a real-world scenario

    Green inter-cluster interference management in uplink of multi-cell processing systems

    Get PDF
    This paper examines the uplink of cellular systems employing base station cooperation for joint signal processing. We consider clustered cooperation and investigate effective techniques for managing inter-cluster interference to improve users' performance in terms of both spectral and energy efficiency. We use information theoretic analysis to establish general closed form expressions for the system achievable sum rate and the users' Bit-per-Joule capacity while adopting a realistic user device power consumption model. Two main inter-cluster interference management approaches are identified and studied, i.e., through: 1) spectrum re-use; and 2) users' power control. For the former case, we show that isolating clusters by orthogonal resource allocation is the best strategy. For the latter case, we introduce a mathematically tractable user power control scheme and observe that a green opportunistic transmission strategy can significantly reduce the adverse effects of inter-cluster interference while exploiting the benefits from cooperation. To compare the different approaches in the context of real-world systems and evaluate the effect of key design parameters on the users' energy-spectral efficiency relationship, we fit the analytical expressions into a practical macrocell scenario. Our results demonstrate that significant improvement in terms of both energy and spectral efficiency can be achieved by energy-aware interference management

    Interference Allowance in Clustered Joint Processing and Power Allocation

    No full text
    We derive an analytical formula for the sum rate of the uplink of a linear network of cells when clustered joint processing is adopted among the base stations in a generalised fading environment. An inter-cluster interference allowance scheme is considered and various user power allocation profiles are investigated in terms of optimal achievable sum rate to highlight that cell-based power allocation is preferable to cluster-based. The contribution of each base station on the cluster sum rate is investigated and its importance is discussed. Numerical results are produced for a real-world scenario showing how medium density systems are the most viable case for clustered system design by achieving > 80% of the global cooperation capacity
    corecore