3 research outputs found

    Interference alignment for the MIMO interference channel

    Full text link
    We study vector space interference alignment for the MIMO interference channel with no time or frequency diversity, and no symbol extensions. We prove both necessary and sufficient conditions for alignment. In particular, we characterize the feasibility of alignment for the symmetric three-user channel where all users transmit along d dimensions, all transmitters have M antennas and all receivers have N antennas, as well as feasibility of alignment for the fully symmetric (M=N) channel with an arbitrary number of users. An implication of our results is that the total degrees of freedom available in a K-user interference channel, using only spatial diversity from the multiple antennas, is at most 2. This is in sharp contrast to the K/2 degrees of freedom shown to be possible by Cadambe and Jafar with arbitrarily large time or frequency diversity. Moving beyond the question of feasibility, we additionally discuss computation of the number of solutions using Schubert calculus in cases where there are a finite number of solutions.Comment: 16 pages, 7 figures, final submitted versio

    Ergodic Interference Alignment

    Full text link
    This paper develops a new communication strategy, ergodic interference alignment, for the K-user interference channel with time-varying fading. At any particular time, each receiver will see a superposition of the transmitted signals plus noise. The standard approach to such a scenario results in each transmitter-receiver pair achieving a rate proportional to 1/K its interference-free ergodic capacity. However, given two well-chosen time indices, the channel coefficients from interfering users can be made to exactly cancel. By adding up these two observations, each receiver can obtain its desired signal without any interference. If the channel gains have independent, uniform phases, this technique allows each user to achieve at least 1/2 its interference-free ergodic capacity at any signal-to-noise ratio. Prior interference alignment techniques were only able to attain this performance as the signal-to-noise ratio tended to infinity. Extensions are given for the case where each receiver wants a message from more than one transmitter as well as the "X channel" case (with two receivers) where each transmitter has an independent message for each receiver. Finally, it is shown how to generalize this strategy beyond Gaussian channel models. For a class of finite field interference channels, this approach yields the ergodic capacity region.Comment: 16 pages, 6 figure, To appear in IEEE Transactions on Information Theor
    corecore