42,583 research outputs found

    Fine-Scale Habitat Segregation between Two Ecologically Similar Top Predators

    Get PDF
    Similar, coexisting species often segregate along the spatial ecological axis. Here, we examine if two top predators (jaguars and pumas) present different fine-scale habitat use in areas of coexistence, and discuss if the observed pattern can be explained by the risk of interference competition between them. Interference competition theory predicts that pumas should avoid habitats or areas used by jaguars (the dominant species), and as a consequence should present more variability of niche parameters across study areas. We used non-invasive genetic sampling of faeces in 12 different areas and sensor satellite finescale habitat indices to answer these questions. Meta-analysis confirmed differences in fine-scale habitat use between jaguars and pumas. Furthermore, average marginality of the realized niches of pumas was more variable than those of jaguars, and tolerance (a measure of niche breadth) was on average 2.2 times higher in pumas than in jaguars, as expected under the interference competition risk hypothesis. The use of sensor satellite fine-scale habitat indices allowed the detection of subtle differences in the environmental characteristics of the habitats used by these two similar top predators, which, as a rule, until now were recorded using the same general habitat types. The detection of fine spatial segregation between these two top predators was scale-dependent.Peer reviewe

    Viral quasispecies profiles as the result of the interplay of competition and cooperation

    Get PDF
    Viral quasispecies can be regarded as a swarm of genetically related mutants or a quasispecies (QS). A common formalism to approach QS is the replicator-mutator equation (RME). However, a problem with the RME is how to quantify the interaction coefficients between viral variants. Here, this is addressed by adopting an ecological perspective and resorting to the niche theory of competing communities, which assumes that the utilization of resources primarily determines ecological segregation between competing individuals (the different viral variants that constitute the QS). Using this novel combination of RME plus the ecological concept of niche overlapping, for describing QS, we explore the population distributions of viral variants that emerge, as well as the corresponding dynamics. We observe that the population distribution requires very long transients both to A) reach equilibrium and B) to show a clear dominating master sequence. Based on different independent and recent experimental evidence, we find that when some cooperation or facilitation between variants is included in appropriate doses we can solve both A) and B). We show that a useful quantity to calibrate the degree of cooperation is the Shannon entropy. Therefore, in order to get a typical quasispecies profile, it seems that pure competition is not enough. Rather, some degree of cooperation among viral variants is needed. This has several biological implications that might contribute to shed light on the mechanisms operating in QS dynamics and to understand the QS as a whole entity.Comment: 23 pages, 5 figure

    Niches, rather than neutrality, structure a grassland pioneer guild

    Get PDF
    Pioneer species are fast-growing, short-lived gap exploiters. They are prime candidates for neutral dynamics because they contain ecologically similar species whose low adult density is likely to cause widespread recruitment limitation, which slows competitive dynamics. However, many pioneer guilds appear to be differentiated according to seed size. In this paper, we compare predictions from a neutral model of community structure with three niche-based models in which trade-offs involving seed size form the basis of niche differentiation. We test these predictions using sowing experiments with a guild of seven pioneer species from chalk grassland. We find strong evidence for niche structure based on seed size: specifically large-seeded species produce fewer seeds but have a greater chance of establishing on a per-seed basis. Their advantage in establishment arises because there are more microsites suitable for their germination and early establishment and not directly through competition with other seedlings. In fact, seedling densities of all species were equally suppressed by the addition of competitors' seeds. By the adult stage, despite using very high sowing densities, there were no detectable effects of interspecific competition on any species. The lack of interspecific effects indicates that niche differentiation, rather than neutrality, prevails

    Ecological theory as a foundation to control pathogenic invasion in aquaculture

    Get PDF
    Detrimental host-pathogen interactions are a normal phenomenon in aquaculture animal production, and have been counteracted by prophylactic use of antibiotics. Especially, the youngest life stages of cultivated aquatic animals are susceptible to pathogen invasion, resulting in disease and mortality. To establish a more sustainable aquatic food production, there is a need for new microbial management strategies that focus on 'join them' and not the traditional 'beat them' approaches. We argue that ecological theory could serve as a foundation for developing sustainable microbial management methods that prevent pathogenic disease in larviculture. Management of the water microbiota in aquaculture systems according to ecological selection principles has been shown to decrease opportunistic pathogen pressure and to result in an improved performance of the cultured animals. We hypothesize that manipulation of the biodiversity of the gut microbiota can increase the host's resistance against pathogenic invasion and infection. However, substantial barriers need to be overcome before active management of the intestinal microbiota can effectively be applied in larviculture

    Evolution of Resource Competition between Mutually Dependent Digital Organisms

    Get PDF
    We study the emergence and dynamics of competing strains of digital organisms in a world with two depletable resources. Consumption of one resource produces the other resource as a by-product, and vice versa. As a consequence, two types of mutually dependent organisms emerge that each prey on the waste product of the other. In the absence of mutations, that is, in a purely ecological setting, the abundances of the two types of organisms display a wide range of different types of oscillations, from regular oscillations with large amplitude to irregular oscillations with amplitudes ranging from small to large. In this regime, time-averaged abundance levels seem to be controlled by the relative fitness of the organisms in the absence of resources. Under mutational pressure, on the other hand, populations evolve that seem to avoid the oscillations of intermediate to large amplitudes. In this case, the relative fitness of the organisms in the presence of resources plays an important role in the time-averaged abundance levels as well

    Human pressures on two estuaries of the Iberian Peninsula are reflected in food web structure

    Get PDF
    As a result of the increased urban and agricultural development in coastal environments, estuaries are among the most modified and threatened aquatic ecosystems. This study used stable isotopes to examine the effects of human impacts by contrasting the food web structures of two Iberian estuaries exposed to different degrees of human pressure. More complex feeding pathways were found in the more altered estuary (Guadalquivir). Greater spread among species along the carbon axis suggests that the primary consumers exploit organic matter with various origins, whereas different nitrogen signals of the secondary consumers suggest that they feed on different suites of prey. In contrast, the similar isotopic signals of secondary consumers in the relatively little influenced estuary (Guadiana) suggests similarity in diet composition and feeding on the same organic matter sources. Understanding trophic interactions in estuaries is vital for defining proper management and conservation, and the preliminary data provided here are one step in this direction

    Nest niche overlap among the endangered Vinaceous-breasted Parrot (Amazona vinacea) and sympatric cavity-using birds, mammals, and social insects in the subtropical Atlantic Forest, Argentina

    Get PDF
    Many forest bird species require tree cavities for nesting, and share this resource with a diverse community of animals. When cavities are limited, niche overlap can result in interspecific competition, with negative consequences for threatened populations. Vinaceous-breasted Parrots (Amazona vinacea) are endangered cavity nesters endemic to the subtropical Atlantic Forest, where cavities are scarce. We examined nest niche overlap among Vinaceous-breasted Parrots and 9 potential competitors (birds and mammals >140 g, and social insects) in Argentina, considering (1) timing of breeding, (2) characteristics of cavities (depth, entrance diameter, height), trees (diameter at breast height DBH, species, condition), and habitat (surrounding land use, distance to edge), and (3) interspecific cavity reuse. During 10 breeding seasons we studied nests and roosts, measured their characteristics, and monitored cavities to detect reuse. We used multinomial logistic regression to determine whether the 6 most abundant taxa differed in nest and roost site characteristics. Timing of breeding overlapped for all bird species except the White-eyed Parakeet (Psittacara leucophthalmus). No combination of cavity, tree, and habitat characteristics predicted the taxa that utilized cavities. Moreover, 8 of the 10 taxa reused cavities interspecifically. The high level of overlap in realized nest niche, combined with previous evidence that cavities could limit bird density in our study area, suggest the possibility of interspecific competition for cavities among multiple taxa. Although models did not perform well at classifying cavities by taxon, some characteristics of cavities, trees, and habitat were selected more by Vinaceous-breasted Parrots than by other taxa, and we recommend targeting conservation efforts toward cavities and trees with these characteristics (7-40 cm entrance diameter, >10 m high, DBH >55 cm). We found 62% of Vinaceous-breasted Parrot nests on farms (vs. ≤50% for other taxa), highlighting the importance of working with local farmers to conserve cavities in anthropogenic habitats as well as in protected areas.Fil: Bonaparte, Eugenia Bianca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Cockle, Kristina Louise. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina. University of British Columbia; Canad
    corecore