268 research outputs found

    Robust Lattice Alignment for K-user MIMO Interference Channels with Imperfect Channel Knowledge

    Full text link
    In this paper, we consider a robust lattice alignment design for K-user quasi-static MIMO interference channels with imperfect channel knowledge. With random Gaussian inputs, the conventional interference alignment (IA) method has the feasibility problem when the channel is quasi-static. On the other hand, structured lattices can create structured interference as opposed to the random interference caused by random Gaussian symbols. The structured interference space can be exploited to transmit the desired signals over the gaps. However, the existing alignment methods on the lattice codes for quasi-static channels either require infinite SNR or symmetric interference channel coefficients. Furthermore, perfect channel state information (CSI) is required for these alignment methods, which is difficult to achieve in practice. In this paper, we propose a robust lattice alignment method for quasi-static MIMO interference channels with imperfect CSI at all SNR regimes, and a two-stage decoding algorithm to decode the desired signal from the structured interference space. We derive the achievable data rate based on the proposed robust lattice alignment method, where the design of the precoders, decorrelators, scaling coefficients and interference quantization coefficients is jointly formulated as a mixed integer and continuous optimization problem. The effect of imperfect CSI is also accommodated in the optimization formulation, and hence the derived solution is robust to imperfect CSI. We also design a low complex iterative optimization algorithm for our robust lattice alignment method by using the existing iterative IA algorithm that was designed for the conventional IA method. Numerical results verify the advantages of the proposed robust lattice alignment method

    Compute-and-Forward: Harnessing Interference through Structured Codes

    Get PDF
    Interference is usually viewed as an obstacle to communication in wireless networks. This paper proposes a new strategy, compute-and-forward, that exploits interference to obtain significantly higher rates between users in a network. The key idea is that relays should decode linear functions of transmitted messages according to their observed channel coefficients rather than ignoring the interference as noise. After decoding these linear equations, the relays simply send them towards the destinations, which given enough equations, can recover their desired messages. The underlying codes are based on nested lattices whose algebraic structure ensures that integer combinations of codewords can be decoded reliably. Encoders map messages from a finite field to a lattice and decoders recover equations of lattice points which are then mapped back to equations over the finite field. This scheme is applicable even if the transmitters lack channel state information.Comment: IEEE Trans. Info Theory, to appear. 23 pages, 13 figure

    Cooperative Compute-and-Forward

    Full text link
    We examine the benefits of user cooperation under compute-and-forward. Much like in network coding, receivers in a compute-and-forward network recover finite-field linear combinations of transmitters' messages. Recovery is enabled by linear codes: transmitters map messages to a linear codebook, and receivers attempt to decode the incoming superposition of signals to an integer combination of codewords. However, the achievable computation rates are low if channel gains do not correspond to a suitable linear combination. In response to this challenge, we propose a cooperative approach to compute-and-forward. We devise a lattice-coding approach to block Markov encoding with which we construct a decode-and-forward style computation strategy. Transmitters broadcast lattice codewords, decode each other's messages, and then cooperatively transmit resolution information to aid receivers in decoding the integer combinations. Using our strategy, we show that cooperation offers a significant improvement both in the achievable computation rate and in the diversity-multiplexing tradeoff.Comment: submitted to IEEE Transactions on Information Theor
    • …
    corecore