601,386 research outputs found
Frictional sliding without geometrical reflection symmetry
The dynamics of frictional interfaces play an important role in many physical
systems spanning a broad range of scales. It is well-known that frictional
interfaces separating two dissimilar materials couple interfacial slip and
normal stress variations, a coupling that has major implications on their
stability, failure mechanism and rupture directionality. In contrast,
interfaces separating identical materials are traditionally assumed not to
feature such a coupling due to symmetry considerations. We show, combining
theory and experiments, that interfaces which separate bodies made of
macroscopically identical materials, but lack geometrical reflection symmetry,
generically feature such a coupling. We discuss two applications of this novel
feature. First, we show that it accounts for a distinct, and previously
unexplained, experimentally observed weakening effect in frictional cracks.
Second, we demonstrate that it can destabilize frictional sliding which is
otherwise stable. The emerging framework is expected to find applications in a
broad range of systems.Comment: 14 pages, 5 figures + Supplementary Material. Minor change in the
title, extended analysis in the second par
Orientation-Dependent Transparency of Metallic Interfaces
As devices are reduced in size, interfaces start to dominate electrical
transport making it essential to be able to describe reliably how they transmit
and reflect electrons. For a number of nearly perfectly lattice-matched
materials, we calculate from first-principles the dependence of the interface
transparency on the crystal orientation. Quite remarkably, the largest
anisotropy is predicted for interfaces between the prototype free-electron
materials silver and aluminium for which a massive factor of two difference
between (111) and (001) interfaces is found
Application of the z-transform to composite materials
Applications of the z-transform were made earlier to interfacial electron transfer involving semi-infinite solids, e.g., semiconductor/liquid and metal/liquid interfaces and scanning tunneling microscopy. It is shown how the method is readily adapted to treat composite materials, such as solid/solid interfaces or "molecular wire"/solid interfaces
Chemical Bonding Technology: Direct Investigation of Interfacial Bonds
This is the third Flat-Plate Solar Array (FSA) Project document reporting on chemical bonding technology for terrestrial photovoltaic (PV) modules. The impetus for this work originated in the late 1970s when PV modules employing silicone encapsulation materials were undergoing delamination during outdoor exposure. At that time, manufacturers were not employing adhesion promoters and, hence, module interfaces in common with the silicone materials were only in physical contact and therefore easily prone to separation if, for example, water were to penetrate to the interfaces. Delamination with silicone materials virtually vanished when adhesion promoters, recommended by silicone manufacturers, were used. The activities related to the direct investigation of chemically bonded interfaces are described
Controlled interfacial assembly of 2D curved colloidal crystals and jammed shells
Assembly of colloidal particles on fluid interfaces is a promising technique
for synthesizing two-dimensional micro-crystalline materials useful in fields
as diverse as biomedicine1, materials science2, mineral flotation3 and food
processing4. Current approaches rely on bulk emulsification methods, require
further chemical and thermal treatments, and are restrictive with respect to
the materials employed5-9. The development of methods that exploit the great
potential of interfacial assembly for producing tailored materials have been
hampered by the lack of understanding of the assembly process. Here we report a
microfluidic method that allows direct visualization and understanding of the
dynamics of colloidal crystal growth on curved interfaces. The crystals are
periodically ejected to form stable jammed shells, which we refer to as
colloidal armour. We propose that the energetic barriers to interfacial crystal
growth and organization can be overcome by targeted delivery of colloidal
particles through hydrodynamic flows. Our method allows an unprecedented degree
of control over armour composition, size and stability.Comment: 18 pages, 5 figure
Surface melting of methane and methane film on magnesium oxide
Experiments on surface melting of several organic materials have shown
contradictory results. We study the Van der Waals interactions between
interfaces in surface melting of the bulk CH_4 and interfacial melting of the
CH_4 film on the MgO substrate. This analysis is based on the theory of
Dzyaloshinskii, Lifshitz, and Pitaevskii for dispersion forces in materials
characterized by the frequency dependent dielectric functions. These functions
for magnesium oxide and methane are obtained from optical data using an
oscillator model of the dielectric response. The results show that a repulsive
interaction between the solid-liquid and liquid-vapor interfaces exists for the
bulk methane. We also found that the van der Waals forces between two
solid-liquid interfaces are attractive for the CH_4 film on the MgO substrate.
This implies that the van der Waals forces induce the presence of complete
surface melting for the bulk methane and the absence of interfacial melting for
CH_4 on the MgO substrate.Comment: 11 pages, 4 ps figure
Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces
We investigate the stability of electrodeposition at solid-solid interfaces
for materials exhibiting an anisotropic mechanical response. The stability of
electrodeposition or resistance to the formation of dendrites is studied within
a linear stability analysis. The deformation and stress equations are solved
using the Stroh formalism and faithfully recover the boundary conditions at the
interface. The stability parameter is used to quantify the stability of
different solid-solid interfaces incorporating the full anisotropy of the
elastic tensor of the two materials. Results show a high degree of variability
in the stability parameter depending on the crystallographic orientation of the
solids in contact, and point to opportunities for exploiting this effect in
developing Li metal anodes.Comment: 10 pages, 5 figures, 1 table, v3: corrected typos, modified figures,
v2: added references, corrected typo
Lattice-supported surface solitons in nonlocal nonlinear media
We reveal that lattice interfaces imprinted in nonlocal nonlinear media
support surface solitons that do not exist in other similar settings, including
interfaces of local and nonlocal uniform materials. We show the impact of
nonlocality on the domains of existence and stability of the surface solitons,
focusing on new types of dipole solitons residing partially inside the optical
lattice. We find that such solitons feature strongly asymmetric shapes and that
they are stable in large parts of their existence domain.Comment: 13 pages, 3 figures, to appear in Optics Letter
- …
