601,386 research outputs found

    Frictional sliding without geometrical reflection symmetry

    Get PDF
    The dynamics of frictional interfaces play an important role in many physical systems spanning a broad range of scales. It is well-known that frictional interfaces separating two dissimilar materials couple interfacial slip and normal stress variations, a coupling that has major implications on their stability, failure mechanism and rupture directionality. In contrast, interfaces separating identical materials are traditionally assumed not to feature such a coupling due to symmetry considerations. We show, combining theory and experiments, that interfaces which separate bodies made of macroscopically identical materials, but lack geometrical reflection symmetry, generically feature such a coupling. We discuss two applications of this novel feature. First, we show that it accounts for a distinct, and previously unexplained, experimentally observed weakening effect in frictional cracks. Second, we demonstrate that it can destabilize frictional sliding which is otherwise stable. The emerging framework is expected to find applications in a broad range of systems.Comment: 14 pages, 5 figures + Supplementary Material. Minor change in the title, extended analysis in the second par

    Orientation-Dependent Transparency of Metallic Interfaces

    Get PDF
    As devices are reduced in size, interfaces start to dominate electrical transport making it essential to be able to describe reliably how they transmit and reflect electrons. For a number of nearly perfectly lattice-matched materials, we calculate from first-principles the dependence of the interface transparency on the crystal orientation. Quite remarkably, the largest anisotropy is predicted for interfaces between the prototype free-electron materials silver and aluminium for which a massive factor of two difference between (111) and (001) interfaces is found

    Application of the z-transform to composite materials

    Get PDF
    Applications of the z-transform were made earlier to interfacial electron transfer involving semi-infinite solids, e.g., semiconductor/liquid and metal/liquid interfaces and scanning tunneling microscopy. It is shown how the method is readily adapted to treat composite materials, such as solid/solid interfaces or "molecular wire"/solid interfaces

    Chemical Bonding Technology: Direct Investigation of Interfacial Bonds

    Get PDF
    This is the third Flat-Plate Solar Array (FSA) Project document reporting on chemical bonding technology for terrestrial photovoltaic (PV) modules. The impetus for this work originated in the late 1970s when PV modules employing silicone encapsulation materials were undergoing delamination during outdoor exposure. At that time, manufacturers were not employing adhesion promoters and, hence, module interfaces in common with the silicone materials were only in physical contact and therefore easily prone to separation if, for example, water were to penetrate to the interfaces. Delamination with silicone materials virtually vanished when adhesion promoters, recommended by silicone manufacturers, were used. The activities related to the direct investigation of chemically bonded interfaces are described

    Controlled interfacial assembly of 2D curved colloidal crystals and jammed shells

    Full text link
    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional micro-crystalline materials useful in fields as diverse as biomedicine1, materials science2, mineral flotation3 and food processing4. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials employed5-9. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.Comment: 18 pages, 5 figure

    Surface melting of methane and methane film on magnesium oxide

    Full text link
    Experiments on surface melting of several organic materials have shown contradictory results. We study the Van der Waals interactions between interfaces in surface melting of the bulk CH_4 and interfacial melting of the CH_4 film on the MgO substrate. This analysis is based on the theory of Dzyaloshinskii, Lifshitz, and Pitaevskii for dispersion forces in materials characterized by the frequency dependent dielectric functions. These functions for magnesium oxide and methane are obtained from optical data using an oscillator model of the dielectric response. The results show that a repulsive interaction between the solid-liquid and liquid-vapor interfaces exists for the bulk methane. We also found that the van der Waals forces between two solid-liquid interfaces are attractive for the CH_4 film on the MgO substrate. This implies that the van der Waals forces induce the presence of complete surface melting for the bulk methane and the absence of interfacial melting for CH_4 on the MgO substrate.Comment: 11 pages, 4 ps figure

    Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces

    Full text link
    We investigate the stability of electrodeposition at solid-solid interfaces for materials exhibiting an anisotropic mechanical response. The stability of electrodeposition or resistance to the formation of dendrites is studied within a linear stability analysis. The deformation and stress equations are solved using the Stroh formalism and faithfully recover the boundary conditions at the interface. The stability parameter is used to quantify the stability of different solid-solid interfaces incorporating the full anisotropy of the elastic tensor of the two materials. Results show a high degree of variability in the stability parameter depending on the crystallographic orientation of the solids in contact, and point to opportunities for exploiting this effect in developing Li metal anodes.Comment: 10 pages, 5 figures, 1 table, v3: corrected typos, modified figures, v2: added references, corrected typo

    Lattice-supported surface solitons in nonlocal nonlinear media

    Get PDF
    We reveal that lattice interfaces imprinted in nonlocal nonlinear media support surface solitons that do not exist in other similar settings, including interfaces of local and nonlocal uniform materials. We show the impact of nonlocality on the domains of existence and stability of the surface solitons, focusing on new types of dipole solitons residing partially inside the optical lattice. We find that such solitons feature strongly asymmetric shapes and that they are stable in large parts of their existence domain.Comment: 13 pages, 3 figures, to appear in Optics Letter
    corecore